
Sustainable Cities and Society 63 (2020) 102444

Available online 27 August 2020
2210-6707/© 2020 Elsevier Ltd. All rights reserved.

A modelling framework for integrated smart city planning and management 

Lindsay Westraadt *, André Calitz 
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A B S T R A C T   

Observation of global smart city trends shows a shift in focus from sector-based interventions towards integrated 
decision-making informed by Big Data. This move towards integration is evident in the emergence of Integrated 
City Management Platforms (ICMPs). Despite the deluge of data generated by ICMPs and the accompanying 
growth in computing power, limited research has been conducted on exploring the use of this data to develop 
quantitative tools for integrated smart city planning and management. In this study, the Design Science Research 
process was followed to develop and evaluate a modelling framework aimed at exploring the use of ICMP data to 
identify synergies and dependencies across smart city sectors. This paper provides a summary of framework 
design and implementation and discusses the Design Science Knowledge gained from the exercise.   

1. Introduction 

As sustainability issues intensify worldwide (United Nations, 2015), 
city managers are being called to manage increasingly stressed resources 
with unprecedented efficiency (IBM, 2010; IEC, 2015). Globally, the 
Information Technology (IT) industry has stepped up to this challenge, 
and over the last decade there has been an explosion in smart city so-
lutions (IEC, 2015). While smart city technologies continue to accu-
mulate, the transformation of cities is not following at the anticipated 
speed and manner (IEC, 2015). It is believed that this discrepancy is due 
to a lack of a common strategic vision and collaboration across city 
sectors (IBM, 2010; IEC, 2015). In an effort to bridge this gap, obser-
vation of recent smart city trends shows a shift in focus from 
sector-based interventions towards integrated decision-making 
informed by Big Data (IBM, 2010; IEC, 2015; Kourtit, Nijkamp, & 
Steenbruggen, 2017; City Protocol Society, 2015a; Chourabi et al., 2012; 
Fernández-Güell et al., 2016; Schleicher et al., 2016; Mattoni, Guglier-
metti, & Bisegna, 2015, 2017). This move towards integration is evident 
in the emergence of Integrated City Management Platforms (ICMPs) 
(City Protocol Society, 2015a, 2016; Cohen, 2014; Huawei, 2018; IBM, 
2013; IEC, 2015; Zhuhadar et al., 2017). ICMPs aim to present a unified 
view of operations across many agencies, thereby enabling city officials 
to improve efficiency and optimise services in departments such as 
emergency response, transportation, energy, water, and public safety in 
an integrated and synergistic way. 

Despite the deluge of data generated by ICMPs and the accompa-
nying growth in computing power, limited research has been conducted 

on exploring the use of this data to develop quantitative tools for inte-
grated smart city planning and management (Lombardi et al., 2012; 
Mattoni et al., 2015, 2017; Pelorosso, 2020; Schleicher et al., 2016; 
Westraadt & Calitz, 2018). While prevalent and emerging multi-criteria 
decision analysis techniques are effective in optimising multi-objective 
project-level decisions (Greco, Ehrgott, & Figueira, 2016; Gregory 
et al., 2012) and in solving clearly defined multi-criteria problems 
(Fujita et al., 2020), they are limited in performing the more strategic 
task of identifying cross-sector synergies and interdependencies that, 
once leveraged, are deemed necessary to catapult smart cities to a higher 
level of efficiency (IBM, 2010; Mattoni et al., 2017; Westraadt & Calitz, 
2018). 

In this study, the Design Science Research process (Johannesson & 
Perjons, 2012; Peffers et al., 2008) was followed to develop and evaluate 
a modelling framework for integrated smart city planning and man-
agement. The main aim of the study was to contribute to an under-
standing of how data generated by ICMPs can be used to identify 
cross-sector synergies and interdependencies; and how this knowledge 
can be implemented to improve the efficiency at which smart cities are 
managed. This paper provides a summary of framework design and 
implementation and discusses the Design Science Knowledge gained 
from the exercise. 

* Corresponding author at: Department of Physics, PO Box 77000, Nelson Mandela University, Port Elizabeth, 6031, South Africa. 
E-mail address: lindsayw@mandela.ac.za (L. Westraadt).  

Contents lists available at ScienceDirect 

Sustainable Cities and Society 

journal homepage: www.elsevier.com/locate/scs 

https://doi.org/10.1016/j.scs.2020.102444 
Received 13 December 2019; Received in revised form 3 August 2020; Accepted 9 August 2020   

mailto:lindsayw@mandela.ac.za
www.sciencedirect.com/science/journal/22106707
https://www.elsevier.com/locate/scs
https://doi.org/10.1016/j.scs.2020.102444
https://doi.org/10.1016/j.scs.2020.102444
https://doi.org/10.1016/j.scs.2020.102444
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scs.2020.102444&domain=pdf


Sustainable Cities and Society 63 (2020) 102444

2

2. Overview of framework design and implementation 

2.1. Rationale and anticipated research contribution 

Extensive work is currently being done by international standards 
organisations to develop the data, technical and management standards 
required to effectively support integrated decision-making and collab-
oration within ICMPs (Berends, Carrara, & Vollers, 2017; City Protocol 
Society, 2015b; IEC, 2015; ISO, 2016; ITU, 2016; Manyika et al., 2013; 
Open Data Charter, 2015; The British Standards Institution, 2014). Thus 
far, development of management standards has focused on the design of 
conceptual models aimed at creating a common visual understanding of 
core smart city sectors and their interactions, and on developing globally 
comparable Key Performance Indicators (KPIs) aimed at setting clear 
development targets for each city sector (City Protocol Society, 2015a, 
2015c; ISO/IEC., 2017; ISO, 2014; ITU, 2018; McCarney, 2015; The 
British Standards Institution, 2014; U4SSC, 2017). 

As such, emerging smart city KPIs provide the common vision 
necessary for integrated smart city planning and management (City 
Protocol Society, 2015a, 2015c). The focus of this study was to com-
plement smart city KPI frameworks by developing a quantitative tool 
aimed at fostering cross-sector collaborations. Specifically, this paper 
describes the development and evaluation of a modelling framework 
that fosters cross-sector collaborations by quantifying dependencies 
between city sectors and identifying common cross-sector goals. To limit 
the scope of the investigation, the study focused on only one aspect of 
smart cities, namely crime management. 

In this paper, the notion of integrated city planning and management 
refers to the attainment of synergistic multi-sector solutions to complex 
smart city challenges (Gregory et al., 2012). This implies the attainment 
of win-win solutions that efficiently use limited resources to simulta-
neously benefit more than one city sector. Furthermore, the notion of 
integrated planning and management implies the identification and 
accommodation of the social, economic and/or environmental exter-
nalities of activities (DEAT, 2004). It follows, that an integrated 
approach to crime management encompasses the identification of 
common goals as potential areas of collaboration between city sectors 
tasked with crime management and other city sectors; and the identi-
fication of unintentional externalities from activities in other sectors 
that may have a negative impact on crime management. The goal of this 
study was to develop and evaluate a modelling framework that would 
support this multi-sector approach to crime management. 

2.1.1. Framework criteria 
The design criteria (Johannesson & Perjons, 2012; Peffers et al., 

2008) guiding the development and evaluation of the modelling 
framework are listed below:  

• Criterion 1: To identify common goals across multiple city sectors, 
the modelling framework would need to incorporate the develop-
ment goals of all relevant city sectors, in addition to the traditional 
targets for crime management. Furthermore, the framework would 
need to include a model that determines the relationships between 
the goals of crime management and those of other city sectors.  

• Criterion 2: To identify possible negative impacts of activities in 
other sectors on crime, the modelling framework would need to 
include a predictive model capable of modelling the dependence of 
crime on other city sectors. In order to meet this criterion, key fea-
tures in each sector which have the potential to influence crime 
would need to be identified.  

• Criterion 3: The model(s) used need to leverage the impending 
deluge of data generated by ICMPs. Currently, it is standard practice 
to base city planning and management decisions on a heuristic un-
derstanding of the behaviour of complex city systems (Gregory et al., 
2012; NMBM, 2018; Westraadt & Calitz, 2018). This is in part due to 
a lack of available data (Westraadt, Calitz, & Cullen, 2019). As ICMPs 

and open data portals become common place (Berends et al., 2017; 
City Protocol Society, 2015b; IEC, 2015; ISO, 2016; ITU, 2016; 
Manyika et al., 2013; Open Data Charter, 2015; The British Stan-
dards Institution, 2014), there is an opportunity to explore the 
development of data-rich models capable of testing common as-
sumptions about the interdependencies between city sectors. 

• Criterion 4: The model(s) used would need to be able to accom-
modate anticipated complex interactions between city sectors and 
their underlying features (Allen, 1997; Batty & Marshall, 2012; 
Fernández-Güell et al., 2016). 

2.1.2. Proposed modeling framework 
It was anticipated that these criteria could be met through the 

following proposed modelling framework (Fig. 1):  

• Input Data: Emerging smart city KPI frameworks (City Protocol 
Society, 2015c) provide a set of sectoral KPIs and targets, and 
thereby provide a means of identifying the development goals of all 
city sectors. Furthermore, a review of key variables influencing crime 
(Westraadt, 2019) showed that many of these variables overlap with 
sectoral indicators incorporated into existing city KPI frameworks. It 
was therefore decided to select a subset of smart city indicators that 
correspond to commonly used predictors of crime as input to the 
proposed model. By so doing, the model would meet Criteria 1 and 
2. Furthermore, this choice of input features would meet Criterion 3 
as ICMP management standards prescribe the collection of KPI data. 

• Predictive Model: It was anticipated that the modelling re-
quirements of both Criteria 1 and 2 could be met by developing a 
single predictive model that predicts crime rates as a function of the 
input data described above. Since the complexity of these relation-
ships was unknown, it was expected that Criteria 4 could be met by 
using an artificial neural network to develop the predictive model.  

• Sensitivity Analysis: It was anticipated that synergies between city 
sectors could be identified by performing a sensitivity analysis on 
model output to determine the relative sensitivity of crime rates to 
KPIs in other city sectors. Here, KPIs that strongly influence crime 
rates may constitute common cross-sector goals (Criterion 1) or, in 
contrast, may indicate possible externalities that need to be 
addressed (Criterion 2). 

2.1.3. Anticipated research contribution 
The goal of this study was to develop and evaluate a modelling 

framework that would support an integrated approach to crime man-
agement. The anticipated research contribution is to evaluate the val-
idity of the modelling framework proposed in Section 2.1.2 and to 
demonstrate the implementation and anticipated benefits thereof. The 
main research questions answered by this study (see Sections 3 and 4) 
are listed below: 

RQ 1. Is there sufficient overlap between predictors of crime and smart 
city KPI frameworks to validate the use of smart city KPIs to predict 
crime? 

RQ 2. Was the model effective at predicting crime? 

RQ 3. Was the modelling framework effective in identifying cross- 
sector synergies and externalities? 

RQ 4. Did the modelling framework identify any discrepancies in 
common assumptions about the interdependencies between city sectors? 

RQ 5. How can the knowledge gained in this study inform KPI tracking 
and data collection in smart cities? 

2.2. Input data 

As indicated in Section 2.1.2, the input data used in the proposed 
modelling framework was to consist of a subset of smart city indicators 
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that correspond to commonly used predictors of crime. Readily available 
open data for New York City (NYC OpenData) was used to develop and 
demonstrate the proposed modelling framework. NYC data was chosen 
since the NYC OpenData portal was one of the most comprehensive city 
data portals available, covering all major city sectors at spatial resolu-
tions extending beyond the typically reported citywide averages. The 
indicators used in this study are listed in Table 1. Indicators were 
selected from the smart city KPI framework proposed by the City Pro-
tocol Society (2015a), (City Protocol Society, 2015c)2015c), guided by 
predictors of crime commonly employed in crime forecasting models 
(Perry et al., 2013; Westraadt, 2019). 

The availability of data at the required spatial unit of modelling was 
another factor limiting the selection of indicators. City planning most 
often makes use of citywide annual trends in KPIs and situational in-
dicators to identify challenges and inform decisions (de Blasio, Fuleihan, 
& Newman, 2018; MOO, 2018; NMBM, 2018). This practice is reflected 
in the spatial and temporal resolution of data typically available on city 
open data portals. In contrast, there is a large spatial variation in 
socio-economic and environmental trends across a city. In order to 
resolve the diverse spatial pattern of crime and its associated predictors 
across a city, a smaller spatial unit of analysis was necessary for the 
modelling framework proposed in this study. Spatially, indicator data 
was aggregated at the Public Use Microdata Area (PUMA) (Fig. 5) 
geographic unit. The PUMA (or the associated community district) was 
one of the most commonly used spatial units of reporting in the NYC 
open datasets, and was the smallest statistical geographic unit with 
sufficient annual data to meet the needs of the study. 

For each variable (listed in Table 1), a table of annual measures for 
each PUMA was created for the years 2006–2017. These were then 
combined into a single table with columns representing each variable. 
The data table used in the study, therefore, consisted of 660 data tuples; 
with each of the 55 PUMAs contributing 12 data tuples, one for each 
year. PUMA and year identifiers were not used in the development of the 
neural networks (Section 2.3), and predictions were based purely on 
location features. Furthermore, in order to eliminate bias introduced by 
the wide range of scales used among the selected input features, each 
variable was first standardised (Z-score) before proceeding with model 
development (Hair et al., 2014). Further descriptions of data sources, 
choice of key performance indicators, data preparation and the associ-
ated management challenges and implications are described elsewhere 
(Westraadt, 2019; Westraadt et al., 2019). 

In general, the indicators listed in Table 1 are not exact imple-
mentations of City Protocol Society (CPA) indicators (City Protocol So-
ciety, 2015a, 2015c), but rather they have been adapted according to 

closely related crime predictors and available data. Out of the 22 in-
dicators used in this study, only four indicators are not associated with a 
related CPA indicator. In these instances, new indictors were created due 
to the availability of relevant data for which no CPA indicator exists. 
Specifically, these four indicators relate to the prevalence of single 
mothers (ID 11), child abuse (ID 12), drug crimes (ID 16) and graffiti (ID 
37). 

To visualise the diversity of domains included in the development of 
the prototype model, the associated NYC agency is specified in Table 2 
for each indicator. The anticipated outcome of model development was 
to include a diverse range of stakeholders in the decision-making pro-
cess, thereby fostering synergistic solutions that are often overlooked 
when problems are solved from within sectoral silos. 

2.3. Predictive model 

As indicated in Section 2.1.2, the modelling framework prescribed 
the development of a predictive model that predicts crime rates as a 
function of the selected smart city KPIs identified in Section 2.2. Since 
the relationship between KPIs was unknown and expected to be complex 
(Allen, 1997; Fernández-Güell et al., 2016), artificial neural networks 
were employed to model the inter-dependencies between variables 
(Han, Kamber, & Pei, 2012; Tan, Steinbach, & Kumar, 2006). Artificial 
neural networks are well known for their ability to automatically 
approximate any function (Han et al., 2012; Tan et al., 2006), and are 
often used when the relationship between variables is unknown or 
complex. 

Key design parameters that influence how well a trained neural 
network generalises to new data include the choices of network typol-
ogy, initial weights and biases, and regularisation constant (Han et al., 
2012; Tan et al., 2006). The tuning of these hyperparameters is often 
performed manually. Consequently, finding the optimal model for a 
given problem is a trial and error process that is often computationally 
expensive and time consuming. To circumvent these challenges, soft-
ware tools exist to automatically optimise network hyperparameters. In 
this study, one such tool, namely the Model Manager software package 
developed by Sourmail (2002), (Sourmail, 2004)2004, was used to 
develop a set of prototype models for crime management in smart cities. 

A simple feed-forward neural network with one hidden layer forms 
the basis of models developed using the Model Manager software 
package (Sourmail, 2002, 2004). Since the models were to be used to 
make numeric predictions, only one output unit was used. The main 
feature of the Model Manager software is its use of a Bayesian learning 
algorithm to automatically infer the optimal regularisation constant 

Fig. 1. A modelling framework for integrated crime management in smart cities. (a) KPIs from traditionally isolated management silos are used as input data in (b) a 
crime prediction model. (c) Sensitivity analysis is carried out on model output to determine the relative influence of sectoral KPIs on crime. Source: Author’s own 
construction. 
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from the input data (Shahriari et al., 2016), thereby removing the need 
to manually optimise the regularisation parameters of alternative 
network topologies. Network design, therefore, only focuses on varying 
the number of hidden units and the choice of initial priors for the 
weights Sourmail, 2002; Sourmail, 2004. The Model Manager training 
process involves the training of multiple models with different numbers 
of hidden units (typically 1–25) and different priors on the weights 
(typically 5) . The models are then used to make predictions on an un-
seen testing set and are ranked according to predictive performance. An 
ensemble of models is then used to further improve the accuracy of the 
predictor (Sourmail, 2002, 2004). 

In addition to automatically inferring the optimal regularisation 
constant, inherent in the Bayesian optimisation algorithm, is a means of 

quantifying the uncertainty in model predictions for a given set of 
weights (MacKay, 1992). In general, while neural networks provide the 
best-fit function to a set of data, they do not describe the uncertainties in 
defining the fitting function in regions of the input space where data are 
sparse or where the data are noisy (Bhadeshia, 1999; Shahriari et al., 
2016). Depending on the chosen hyperparameters, there are many 
functions which can be fitted or extrapolated into uncertain regions of 
the input space, without compromising the fit in regions which are rich 
in accurate data (Bhadeshia, 1999). The Bayesian Neural Networks 
(BNNs) (MacKay, 1992) developed using the Model Manager software 
(Sourmail, 2002, 2004) allow for the calculation of error bars repre-
senting this uncertainty (see dashed lines in Figs. 9–12). This knowledge 
can further inform decision-making by indicating the reliability of 
model predications. 

In this study, two BNNs were developed for crime management in 
smart cities. The BNNs were implemented using the Model Manager 
software package developed by (Sourmail (2004)), and the set of 
standardised input features listed in Table 1. Variables relating to race 
(hispanic, white, black, asian) and target crimes (larStreet, larCommercial, 
larResidence, robStreet, robCommercial, robResidence, assStreet, assResi-
dence) were not included as input features. The rationale behind 
excluding race from the set of input features is discussed in Section 3.2. 

The models were developed to predict street larceny and street 
robbery in New York City, respectively. The choice of crimes was 
intentional, with the aim of encapsulating as wide a range of system 
behaviour as possible. As seen in Figs. 6 and 7, the two crimes exhibit 
different spatial patterns. They also represent different types of crime, 
namely property crime (larceny) and violent crime (robbery). The per-
formance of the developed neural networks is described in Section 3.1. 

2.4. Sensitivity analysis 

The nature of the relationship between the predictions of a neural 
network model and its input parameters is implicit in the architecture of 
the model and the values of the optimised network weights (Bhadeshia, 
1999). These weights, however, are not intuitively easy to interpret 
(Bhadeshia, 1999). For this reason, neural networks are often criticised 

Table 1 
Indicators used in this study.  

ID Agency* Indicator(s) used Variable name 

1 CECM Events per 100k population events 
2 DOF Assessed (commercial/ 

residential) property values 
relative to citywide average 
assessed (commercial/ 
residential) property values 

V1 (residential), V5 
(commercial) 

3 MOEO Unemployment rate (%) unemployment 
4 MOEO Theil’s T inequality index 

(within PUMA**s/between 
PUMAs) (World Bank, 2014) 

ineqT1r (within), ineqT2r 
(between) 

7 DOE Percentage of population 
without high school diploma 

noHigh 

8 DOE Percentage of population with 
higher education degrees 

degree 

11 DYCD Percentage single female 
householders 

female 

12 ACS Number of credible abuse/ 
neglect investigations per 100k 
population 

abuse 

13 DYCD Fertility rate per 1000 women 
aged 15-44 

fertility 

14 CCRB Total civilian complaints 
against uniformed members of 
the New York City Police 
Department per 100k 
population 

integrity 

15 HRA; 
DOHMH 

Adult New Yorkers without 
health insurance (%) 

insurance 

16 DOHMH; 
NYPD 

Drug crimes per 100k 
population 

drugs 

20 DHS Total number of 311 requests 
related to homeless 
encampments and panhandling 
per 100k population 

homeless 

21 NYCHA Percentage social housing socialHousing 
22 DOT Average number of street lights 

out per day per unit area 
SL 

24 DCP Percentage land use type P1 – P11*** 
26 DCP Theil’s L diversity index (World 

Bank, 2014) 
diversity 

33 NYPD Larceny (street/residential/ 
commercial) per 100k 
population 

larStreet, larCommercial, 
larResidence 

34 NYPD Robbery (street/residential/ 
commercial) per 100k 
population; Assault (street/ 
residential) per 100k 
population 

robStreet, robCommercial, 
robResidence, assStreet, 
assResidence 

36 DOT Pedestrian volume index pedIndex 
37 NYPD; 

DSNY; EDC 
Graffiti reports per 100k 
population 

graffiti 

38 DOHMH; 
DEP 

Fine particulate matter (PM2.5) 
concentration 

PM  

* Abbreviations for NYC agencies are defined in Table 2. 
** PUMA: Public Use Microdata Area - statistical geographic unit (Westraadt, 

2019). 
*** Land use codes. See Westraadt (2019) for detail. 

Table 2 
Indicators per NYC agency. *Indicator IDs are specified in Table 1.  

Agency Indicator 
ID(s)* 

Agency Indicator 
ID(s)* 

Administration for 
Children’s Services 
(ACS) 

12 Economic Development 
Corporation (EDC) 

37 

Civilian Complaint 
Review Board (CCRB) 

14 Human Resources 
Administration (HRA) 

15 

Department of City 
Planning (DCP) 

24; 26 Mayor’s Office for 
Economic Opportunity 
(MOEO) 

3-5 

Department of Education 
(DOE) 

7-8 Mayor’s Office of Climate 
Policy and Programs 
(MOCPP) 

9 

Department of 
Environmental 
Protection (DEP) 

38 New York City Housing 
Authority (NYCHA) 

21 

Department of Finance 
(DOF) 

2 New York Police 
Department (NYPD) 

16; 33–34; 
37 

Department of Health 
and Mental Hygiene 
(DOHMH) 

15-16; 38 Department of Sanitation 
(DSNY) 

37 

Department of Homeless 
Services (DHS) 

20 Office of Citywide Event 
Coordination and 
Management (CECM) 

1 

Department of 
Transportation (DOT) 

22; 36   

Department of Youth and 
Community 
Development (DYCD) 

11; 13    
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as being black box predictors (Han et al., 2012). In order to identify 
synergies between city sectors (see Section 2.1), the BNNs were com-
bined with sensitivity analysis (Han et al., 2012) to determine the 
relative sensitivity of crime rates to KPIs in other city sectors. Typically, 
as part of a sensitivity analysis, an input variable is varied while the 
remaining input variables are fixed at some value. The changes in the 
network output are then observed. The results of the sensitivity analysis 
are shown in Section 3.3 for each model, together with a demonstration 
of its anticipated application in practice. 

During the initial stage of model exploration, it was found that there 
was a high degree of correlation among input features. Further inves-
tigation showed that the input data tended to cluster together to 
represent different system “states” (Section 3.2). Due to the clustering in 
input space, care needed to be taken when fixing variables for sensitivity 
analysis. The choice of fixed variables is explained in Section 3.3. 
Exploratory Factor Analysis was used to identify latent “states” within 
the input data. The process followed, and the observed states, are dis-
cussed in Section 3.2. In summary, an overview of the model develop-
ment and implementation process is shown in Fig. 2. 

3. Results and discussion 

3.1. Predictive models 

A visualisation of the accuracy and precision of the neural network 
predictions (see Section 2.3) is shown in Fig. 3. In general, the accuracies 
of the neural network predictions were comparable to those made by 
simpler linear regression models. However, the neural networks per-
formed better than the linear models in sparsely populated regions of the 
input space (that is, where the standardised target values deviated 
significantly from the norm). The neural networks also predicted crime 
rates with more precision than the linear models. However, this is likely 
due to the ensemble method used in the employed software package 
(Sourmail, 2004). Regardless of the complexity of the chosen model, the 
good predictive accuracies of the prototype models indicate that the 
models were effective at predicting crime (RQ 2, see Section 2.1.3) at 
the temporal and spatial scales used in this study (see Section 2.2). This 
indicates that there was sufficient overlap between the drivers of crime 
and the set of indicators used in this study (see Section 2.2) to validate 
the use of modified smart city KPIs to predict crime (RQ 1, see Section 
2.1.3). As stated in Section 2.2, the indicators used in the study (listed in 
Table 1) are not exact implementations of smart city KPIs, but rather 
they have been adapted according to closely related crime predictors 
and available data. Furthermore, 4 out of the 22 indicators used in this 
study were not associated with a related smart city indicator. In these 
instances, new indictors were created due to the availability of relevant 
data for which no smart city indicator exists. 

3.2. Exploratory factor analysis 

Exploratory Factor Analysis (EFA) (Hair et al., 2014) revealed four 
highly correlated groups of variables (factors) latent in the input data: 

namely A1, A2, A3 and A4 (Table 3). The extracted factors accounted for 
59 % of the total variance (Table 3). The extracted factor loadings are 
listed in Table 3. These factors were interpreted as city “states”, char-
acterised by the types of crime and socio-economic variables that tended 
to cluster together. The four states identified in this study are illustrated 
in Fig. 4. Here, variables with factor loadings of 0.5 or greater (Table 3) 
were identified as characteristic of a given state (the description of 
variables are given in Table 1). The four states are further described 
below:  

• A1: Collective Efficacy 1: This state strongly correlated with violent 
and residential crimes, as well as with socio-economic factors such as 
drug abuse, single parent households, child abuse, unemployment 
and inequality. This state also strongly correlated with race and al-
tercations with police. This state, therefore, particularly charac-
terised the challenges face by many Black communities in NYC. 
Socioeconomic and demographic indicators such as poverty and race 
are consequently often used as risk-factors for crime (Sampson, 
2006; Taylor, Ratcliffe, & Perenzin, 2015). However, the theory of 
collective efficacy (Bandura, 2000; Browning, 2002; Sampson, 2006) 
advocates a shift away from community-level indicators such as race 
and aims to focus on the underlying social mechanisms at work 
within high-crime neighbourhoods. The paradigm of collective effi-
cacy was adopted in this study. Consequently, the developed model 
did not include race as an input feature, but focused on underlying 
contributors to crime such as abuse or unemployment.  

• A2: Commercial Land Use: This state correlated with commercial 
crimes and street larceny; and was characterised by commercial and 
transportation land uses, high property values, and high levels of 
pedestrian traffic, air pollution and homelessness.  

• A3: Collective Efficacy 2: This state represented the challenges faced 
by a number of Hispanic communities in NYC, and correlated with 
features such as fertility, no health insurance, and no high school 
diploma.  

• A4: Mixed Land Use: This state correlated with multi-family elevator 
buildings, mixed residential and commercial buildings, and high 
property values. 

To visualise attractor basins across NYC, factor scores for each 
attractor state were calculated for each PUMA in 2017 (see Section 2.2 
for a summary of the data preparation and variables used in this study). 
Factor scores were calculated by averaging over strongly loading input 
features as delineated in Table 3 (Hair et al., 2014). An average of the 
following standardised input features was used to calculate a factor 
score for each attractor state:  

• A1: Collective Efficacy 1: drugs, female, abuse, unemployment  
• A2: Commercial Land Use: P5, V5  
• A3: Collective Efficacy 2: insurance, noHigh, fertility  
• A4: Mixed Land Use: V1, P3, P4 

The dominant state in each PUMA was then determined by selecting 

Fig. 2. Overview of model development and implementation process. Source: Author’s own construction.  
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the state with the highest factor score. The dominate state per PUMA is 
shown in Fig. 5. Only factor scores greater than 0.5 were used, as these 
were considered to be sufficiently deviated from the mean. Visual 

inspections show good agreement between the crimes associated with 
the various attractors, and the spatial trends observed in Figs. 6 and 7. 

3.3. Sensitivity analysis 

3.3.1. Analysis constraints 
Concerning sensitivity analysis, there were two anticipated re-

percussions from the existence of attractor states observed in Section 
3.2:  

A The clustering of state variables observed in Section 3.2 is analogous 
to the concept of basins of attraction in complex dynamic systems. A 
basin of attraction is a region in state space in which the system tends 
to remain (Gundry et al., 2011; Sendzimir et al., 2007; Walker et al., 
2004; Westley, Patton, & Zimmerman, 2006, 2011; Westley et al., 
2015). This equilibrium state can be described as the current system 
regime, governed by dominant rule-sets emerging from the under-
lying social and organisational networks and prevailing in-
frastructures (Westley et al., 2011). Because different state regimes 
are governed by different “rules” they are likely to respond differ-
ently to the same set of input features. In order to meaningfully 
interpret the results of a sensitivity analysis, the investigator needs to 
know which state the system under investigation is in (Westley et al., 
2015).  

B Because different basins of attraction correspond to specific regions 
in state space (Walker et al., 2004; Westley et al., 2011), they are 
likely to be under-represented in regions of input space which fall 
outside of these domains. Consequently, there will be a higher degree 
of uncertainty in neural network predictions in these regions (see 
Section 2.3), as less data will be available to train the network 
(Franceschini et al., 2019). 

In order to address these anticipated challenges, sensitivity analyses 
were carried out for the two models developed in Section 3.1, separately 
for each of the four attractor states identified in Section 3.2. This was 
achieved by fixing each input feature to its average value within a 
particular state. For any input tuple, the tuple was deemed to be in an 
attractor state if the factor score for that state was above 1. The calcu-
lation of factor scores was explained in Section 3.2. 

For a given sensitivity analysis, each input feature was indepen-
dently varied while the remaining input features were fixed. Each input 
feature was varied within the numerical range exhibited by that feature 
within the state under investigation. It was anticipated that varying the 
input feature outside of this range would result in high levels of model 
uncertainty, due to limited representation of these ranges in the input 
space. In contrast, in order to test the validity of the above assumptions, 
sensitivity analyses were also performed for each model, using the 

Fig. 3. Visualisation of the accuracy and precision of neural network predictions compared to those made by linear regression. Source: Author’s own construction.  

Table 3 
Extracted factor loadings (n = 660).   

Factors 

% of total variance explained 23.9 14.7 11.7 8.5 

Variables A1 A2 A3 A4 
abuse 0.9 − 0.1 0.3 0.1 
asian − 0.6 0 0.1 − 0.1 
assResidence 0.9 − 0.1 0.1 0.1 
assStreet 0.8 0.4 0.3 0.1 
black 0.8 − 0.1 − 0.2 − 0.2 
degree − 0.5 0.4 − 0.6 0.4 
diversity 0.5 − 0.3 0.2 − 0.3 
drugs 0.7 0.2 0.3 0.3 
events 0.1 0.5 − 0.2 0.2 
female 0.8 − 0.1 0.4 0 
fertility 0.1 − 0.2 0.5 − 0.1 
graffiti 0 0.1 0 0.3 
hispanic 0.2 0 0.8 0.1 
homeless − 0.1 0.7 − 0.2 0.2 
ineqT1r 0.6 − 0.1 0.4 0.4 
ineqT2r − 0.6 0.2 − 0.7 0 
insurance 0.1 0 0.7 − 0.2 
integrity 0.8 0 0.1 0 
larCommercial 0 0.9 − 0.2 0 
larResidence 0.7 0.2 − 0.2 0.3 
larStreet 0.2 0.8 0.1 0.1 
noHigh 0.4 − 0.1 0.9 0 
P1 − 0.2 − 0.4 − 0.1 − 0.8 
P10 0.4 0.2 0.4 0.1 
P11 0 − 0.2 − 0.1 − 0.1 
P2 0.2 − 0.1 0.3 0 
P3 0.2 0.1 − 0.1 0.7 
P4 0 0.3 − 0.2 0.7 
P5 − 0.1 0.9 − 0.1 0 
P6 0 0.2 0.3 0 
P7 0 0.6 0.1 0.1 
P8 0.2 0.2 0 0.4 
P9 0 − 0.3 0.1 0.1 
pedIndex − 0.1 0.7 0 0.2 
PM 0 0.5 0.1 0.3 
robCommercial 0.5 0.7 − 0.1 0 
robResidence 0.8 0 0.2 0.3 
robStreet 0.8 0.3 0.3 0 
SL 0 0.3 0 0.2 
socialHousing 0.6 − 0.1 0.1 0.4 
unemployment 0.7 − 0.2 0.4 0 
V1 − 0.3 0.4 − 0.4 0.5 
V5 − 0.2 0.7 − 0.3 0.4 
white − 0.7 0.1 − 0.5 0.2  
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citywide averages and ranges for each input feature. Thereby, testing the 
feasibility of disregarding attractor states. 

3.3.2. Demonstration 
To demonstrate the application of sensitivity analysis in decision- 

making, three scenarios were explored; namely, street larceny and 
street robbery in the A2 state, and street robbery in the A1 state. The 
sensitivity of each crime to the various input features are listed in 
Table 4 and plotted in Fig. 8. The reported values indicate the predicted 
changes in crime rate per unit change in input feature. Only immediately 
actionable variables are included in Table 4 and Fig. 8. Features relating 
to land use (P1-P11) and property values (V1 and V5), while valuable 
indicators of the location of crime, were not included in this analysis. 

Based on an analysis of Table 4 (Westraadt, 2019) and Fig. 8, the 
agencies deemed to have the most impact on crime in addition to the 
NYPD, include:  

• The Human Resources Administration (HRA) and the Department of 
Health and Mental Hygiene (DOHMH). These agencies may have an 
impact on health insurance coverage.  

• The Department of Youth and Community Development (DYCD) and 
the Administration for Children’s Services (ACS). These agencies 
may be able to assist families regarding single parenthood, abuse and 
family planning.  

• The Department of Education (DOE) could assist youth in completing 
high school.  

• The Mayor’s Office for Economic Opportunity (MOEO) has an impact 
on job creation.  

• The Department of Transportation (DOT) is in charge of street lights.  
• The Civilian Complaint Review Board (CCRB) monitors complaints 

against the police, and can play a role in combatting discrimination 
within the policing system. 

By quantitatively identifying the most influential agencies in the 

Fig. 4. Illustration of NYC attractor states. Source: Author’s own construction.  
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fight against crime, and their key KPIs impacting crime, the modelling 
framework provides an effective means of identifying potential areas of 
synergy between the NYPD and other government sectors (RQ 3, see 
Section 2.1.3). Furthermore, by implementing the modelling frame-
work, the concept of city “states” and their impact on the prediction of 
crime was identified. The management implications of this concept are 
further illustrated below. As such, the modelling framework identified 

discrepancies in common assumptions about the interdependencies be-
tween city sectors, by challenging the notion of a one-size-fits-all 
approach to crime management (RQ 4, see Section 2.1.3). 

Two key properties of city “states” were demonstrated in the anal-
ysis. Table 4 (Fig. 8) illustrates that the response of crime rates to 
changes in input features is not only dependent on the type of crime, but 
also on the city “state” under consideration. For example, the effect of 

Fig. 5. Dominant attractor state per PUMA in 2017. Source: Author’s own construction.  

Fig. 6. Street robberies per 100k population per PUMA in 2017. Source: Author’s own construction.  
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education had opposite effects on street robbery in the A1 and A2 states. 
In the A2 state, the number of street robberies increased as the per-
centage of the population without a high school diploma increased. On 
the contrary, the number of street robberies decreased as the percentage 
of the population without a high school diploma increased in the A1 
state. The latter is possibly due to an associated decrease in wealthy 
targets in these high crime areas. 

Table 5 illustrates the second observed property of city “states”. That 
is, different states are more sensitive to changes in input features than 
others. The A1 and A3 states were less influenced by state variables than 
the A2 and A4 states. This could indicate that these states are more 
resistance to change or that the key drivers of change in these states have 
not yet been identified. 

To investigate the effect of disregarding attractor states, the sensi-
tivity of crime to input features was investigated in more detail. This is 
illustrated in Figs. 9–12 for selected features. In these figures, trends are 

plotted for each attractor state, including citywide trends. Error bars for 
each plot are indicated by dashed lines of the same colour. These errors 
formed part of the Bayesian Neural Network output (see Section 2.3) and 
indicate sparsity and noise in input data. When all states exhibit similar 
behaviour, citywide trends are sufficient to correctly interpret sensi-
tivity analysis results. Example features include health insurance (Fig. 9) 
and street lights (Fig. 10). The relatively large error bars for the A2 and 
A4 states in Fig. 10, indicate that limited data was available for such 
high rates of street light outages. See Westraadt (2019) for further dis-
cussion on the relationship between crime and reported street light 
outages. 

However, citywide trends are not always sufficient to correctly 
interpret sensitivity analysis results. For street larceny (Fig. 11), 
increasing unemployment in states A2 and A4 leads to an increase in 
crime. However, in areas with low collective efficacy (A1 and A3), an 
increase in unemployment leads to a decrease in crime. This is likely 

Fig. 7. Street larceny per 100k population per PUMA in 2017. Source: Author’s own construction.  

Fig. 8. Sensitivity of crime rates to input features for areas in the A1 and A2 attractor states. Variable descriptions are listed in Table 1. Source: Author’s own 
construction. 
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related to a decrease in inequality in affected areas. Due to the high 
concentration of unemployment in states A1 and A3, citywide trends 
shield the effects of increasing crime in more wealthy areas. The low 
rates of unemployment in wealthy areas are reflected in very large error 
bars for the A2 and A4 states. 

Increasing levels of abuse (Fig. 12), tend to increase street robberies 
in all states, except in state A1. A small decrease in street robberies is 
observed in A1 states as abuse rates reach the upper limit for NYC. This 
could perhaps indicate that the effects of abuse reach a plateau for high 
levels of abuse. Citywide trends do not capture this trend. However, it 
does show a very high error bar for high abuse levels, indicating that the 
citywide predictions should be interpreted with caution. 

4. Conclusions and recommendations 

Despite the deluge of data generated by ICMPs (Section 1), limited 
research has been done on exploring the use of this data to develop 
quantitative tools for integrated smart city planning and management. 
The goal of this paper was to described the development and evaluation 

of a modelling framework that fosters cross-sector collaborations by 
quantifying dependencies between city sectors and identifying common 
cross-sector goals (Section 2). To limit the scope of the investigation, the 
study focused on only one aspect of smart cities, namely crime 
management. 

The main premise of this study was that synergistic cross-sector 
collaborations could be fostered by using data from ICMPs and 
emerging smart city KPI frameworks to identify common goals between 
city sectors. It was proposed that, taking smart city KPIs as input, a 
combined approach employing Bayesian Neural Networks and sensi-
tivity analysis could be used as a tool for identifying these goals (Section 
2). To test the feasibility of this supposition, two prototype models were 
developed and evaluated for integrated crime management in smart 
cities (Section 2). 

The main research questions of this study (see Section 2.1.3) were 
answered in Section 3. The results of the study showed that the proto-
type models were effective at predicting crime (RQ 2), indicating that 
there was sufficient overlap between the drivers of crime and the set of 
indicators used in this study to validate the use of modified smart city 

Fig. 9. Street robbery as a function of the percentage of civilians without health 
insurance. Source: Author’s own construction. 

Fig. 10. Street robbery as a function of the number of street lights out reported. 
Source: Author’s own construction. 

Fig. 11. Street larceny as a function of the unemployment rate. Source: Au-
thor’s own construction. 

Fig. 12. Street robbery as a function of abuse. Source: Author’s own 
construction. 
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KPIs to predict crime (RQ 1). 
As stated in Section 2.2, the indicators used in the study (listed in 

Table 1) are not exact implementations of smart city KPIs, but rather 
they have been adapted according to closely related crime predictors 
and available data. Furthermore, 4 out of the 22 indicators used in this 
study were not associated with a related smart city indicator. In these 
instances, new indictors were created due to the availability of relevant 
data for which no smart city indicator exists. Specifically, these four 
indicators relate to the prevalence of single mothers (ID 11), child abuse 
(ID 12), drug crimes (ID 16) and graffiti (ID 37). Examination of Table 4 
shows that, barring Indicator 37, these indicators played a significant 
role in predicting crime. It is consequently recommended that the pro-
posed modelling framework be expanded to prescribe the identification 
of a secondary set of sectoral KPIs that, while traditionally not forming 
part of a sector’s core KPIs, are nevertheless tracked due to their po-
tential impact on neighbouring sectors (RQ 5). This recommendation is 
similar to the notion of Thresholds of Potential Concern applied in the 
field of natural resource management (Biggs et al., 2015). 

The practical implementation of the modelling framework was 
demonstrated in Section 3.3. By objectively identifying the most influ-
ential agencies in the fight against crime, and their key KPIs impacting 
crime, the modelling framework provides an effective means of identi-
fying the common goals necessary to support cross-sector collaboration 
(RQ 3). Furthermore, by implementing the modelling framework, the 
concept of city “states” and their impact on the prediction and man-
agement of crime was identified. As such, the modelling framework 
identified discrepancies in common assumptions about the 

interdependencies between city sectors, by challenging the notion of a 
one-size-fits-all approach to crime management (RQ 4). 

To further test the conclusions made in this study, the concepts need 
to be tested within other domains (and combinations therefore) such as 
water or electricity, for example. Furthermore, due to the availability of 
data, a model for strategic integrated city planning was developed in this 
study. Smart city activities are dominated by the real-time management 
of city systems. The application of the proposed modelling framework at 
the short-term management level therefore should be explored. 
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Table 4 
Sensitivity of crime rates to input features for areas in the A1 and A2 attractor 
states. Agency acronym and indictor ID descriptions are listed in Table 2 and 
Table 1, respectively.  

ID Agency Variable name Street 
larceny 
(A2) 

Street 
robbery 
(A2) 

Street 
robbery 
(A1) 

1 CECM events − 0.03 0.03 0.03 
3 MOEO unemployment 0.24 − 0.08 − 0.01 
4 MOEO ineqT1r 

(within) 
0.83 0.58 0.16   

ineqT2r 
(between) 

1.62 0.05 0.29 

7 DOE noHigh 0.02 0.27 − 0.26 
8 DOE degree − 0.02 0.69 0.31 
11 DYCD female 0.4 1.11 0.32 
12 ACS abuse − 0.79 0.26 − 0.03 
13 DYCD fertility 0.21 − 0.01 0.02 
14 CCRB integrity 0.86 0.5 0.27 
15 HRA; 

DOHMH 
insurance 0.46 0.17 0.47 

16 DOHMH; 
NYPD 

drugs 0.15 0.23 − 0.03 

20 DHS homeless 0.21 0.06 0.18 
21 NYCHA socialHousing 0.54 − 0.2 0.33 
22 DOT SL 0.01 − 0.03 − 0.07 
26 DCP diversity − 0.06 0.08 − 0.05 
36 DOT pedIndex 0.29 0 − 0.12 
37 NYPD; 

DSNY; EDC 
graffiti − 0.05 − 0.04 − 0.11 

38 DOHMH; 
DEP 

PM 0.21 0.08 − 0.01  

Table 5 
Average sensitivity to input features by state.  

State Street robbery Street larceny 

A1 0.09 − 0.06 
A2 0.2 0.27 
A3 − 0.01 0.01 
A4 0.14 0.16 
Citywide 0.02 0.08  
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