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a b s t r a c t

This paper investigates the application of diverse transportation modes for a global supply chain (SC) in
stochastic environments. The motivation of our paper is to investigate the idea of enabling a global
flexible SC with disruptive risks in making it less vulnerable by applying diverse transportation modes
which is also our first contribution. The flexibility stems from the fact that transportation modes with a
low-speed transportation contain latent time buffers that can be used by accelerating transport activities.
This represents a promising approach to make supply chains (SCs) more flexible and to establish an
additional degree of freedom in order to manage stochastic events like minor disruptions or serious
catastrophes. In this paper, a stochastic programming model for a multi-stage multi-product SC is de-
veloped. SC partners, including multiple suppliers, a processing center, two assembling centers, multiple
distribution centers and retailers, are incorporated into the model. The second contribution of this paper
is that different types of possible future catastrophic disruptions are quantified and included in the
model. SC catastrophic disruptions like transportation delays or the fact that a SC node is disrupted by a
serious catastrophe are stochastic factors of our model. The model is solved by using PySP, a specific
modeling and stochastic programming framework. In order to show the quality of solutions of the sto-
chastic programming model (SP solutions), a large amount of scenarios is generated to simulate the real
case for each instance. The expected SC costs for these scenarios will be evaluated based on SP solutions
and wait-and-see solutions, which are benchmarks. In addition, decision makers with neutral, optimistic
and pessimistic attitudes regarding the occurrence of disruptions are also simulated and evaluated in the
computational experiments. Managerial insights are concluded from computational results. The most
important conclusion is that proper transportation mode planning enables a flexible global supply chain.
Further conclusions like the quality of stochastic solutions and solutions of simulating decision makers
with neutral, optimistic and pessimistic attitudes, as well as the most beneficial transportation modes in
SCs with uncertain environments are proposed based on the computational results.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

For a long time, SC risk typically has been ignored by managers
in practice since most SC risks are hard to forecast. There still
exists no general strategy which is inexpensive and effective to
handle SCs in stochastic catastrophic environments. Without rapid
responses and right decisions, complete SCs may break down if
particular SC nodes or transportation links suffer a catastrophe.
Nokia's huge success compared with Ericsson's great loss after a
fire in a fabrication line of Philips on 17 March 2000 is a typical
Institute of Information Sys-
any
inj@gmail.com (Y. Fan),
example (Chopra and Sodhi, 2004). From then on, researchers pay
more attention on both risk management and SC risks.

There are some qualitative and quantitative models about SC
risk management such as Guericke et al. (2012). They present the
application of postponement strategies, which refers to transfer-
ring manufacturing steps of a product towards the end of a SC as
an effective strategy for dealing with demand uncertainty. How-
ever, most quantitative models for managing SC risks focus on
operational risks. In contrast, disruption risks such as earthquakes,
tsunamis, floods, storms etc. are normally disregarded (Tang,
2006a; Wilding et al., 2012; Heckmann et al., 2015; Ho et al., 2015).
In order to close this research gap, our motivation is to provide SC
executives decision support by quantifying SC disruption risks and
modeling SCs in stochastic environments.

Flexible transportation is introduced as a SC disruption miti-
gation strategy by Tang (2006b). But this strategy has not been
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investigated in detail. A diversification of transportation modes
provides an opportunity to generate latent time buffers which can
be activated in case of disruption events. The time buffers are
generated by a transport mode which is characterized by a low-
speed transportation. In this case, the buffers come into operation
by switching from a low-speed transport mode to a high-speed
transport mode. If the buffer time is sufficiently long, this ap-
proach makes SCs more flexible to avoid huge losses after cata-
strophic events. In reality, the approach can be found in the con-
cept of slow steaming, too, where in the normal case the speed of
transport is less than the original operating speed.

Flexible SCs are able to adapt effectively to disruptions in
supply and changes in demand whilst maintaining customer ser-
vice levels (Stevenson and Spring, 2007). In this paper, flexible SCs
can be achieved by using variable transportation modes in two
steps: The first step is to determine the transportation mode for
each product on each transportation link. Buffer time should be
preserved by using low-speed transportation modes. The second
step is to eventually switch to a faster transportation mode after a
disruption event happens in order to save transport time for
adopting alternative plans. The decision of the second step de-
pends on the location and severity of the disruption event. Fur-
thermore, it also depends on the decision of the first step. The
focus of this paper is on the question of how to determine the best
transportation mode for each product on each transportation link
in uncertain environments. A two stage multi-scenario SC model is
built based on this problem. Progressive Hedging (PH; see the
Appendix), which is proposed and theoretically proved as a
method to be convergent by Rockafellar and Wets (1991) for
multi-scenario problems, is used to solve the problem instances
for this model. PySP (Watson et al., 2012), which provides a fra-
mework of using PH for multi-stage multi-scenario problems, is
used to get solutions. In order to evaluate the most powerful so-
lution technique, we apply PySP with different values of a specific
parameter ρ, which is an inherent parameter of the PH approach.
Solutions of diverse groups of instances are analyzed in order to
determine a beneficial first stage decision. This decision tends to
support the identification of a common transportation mode for
different types of products as well as for different transportation
links. The results of our numerical analyses reveal basic ideas
about the best solution technique and the most advantageous SC
transportation modes which provides decision support to SC
executives.

Our paper is organized as follows. In the next section, a lit-
erature review is given and the theoretical background is ex-
plained. The investigated problem is illustrated in detail in Section
3. Section 4 contains a presentation of the developed model.
Computational results are presented and analyzed in Section 5.
The application of our model is provided in Section 6. The paper
finishes with the conclusions in Section 7.
2. Literature review

SC risks are classified into operational risks and disruption risks
(Tang, 2006a). Operational risks refer to inherent uncertainties
such as uncertain customer demand, uncertain supply, and un-
certain costs. Disruption risks refer to major disruptions caused by
natural and man-made disasters. A typology of risk sources, con-
sisting of environmental factors, industrial factors, organizational
factors, problem-specific factors and decision-maker related fac-
tors is presented in Rao and Goldsby (2009). Relevant literature
about SC risk management (SCRM) is collected and classified in,
e.g., Tang (2006a), Kouvelis et al. (2006) and Dadfar et al. (2012).
Although many qualitative analyses and quantitative models of
SCRM exist, most quantitative models for managing SC risk focus
on operational risks. In contrast, disruption risks are usually dis-
regarded (Tang, 2006a). Whereas a good portion of the corre-
sponding literature only focuses on demand fluctuations, rather
few papers point out how to cope with catastrophic events.
Woodruff and Voß (2006) present a first attempt to deploy PH on a
SC production planning problem with big bang scenarios.

Postponement strategies provide an additional degree of free-
dom as well as mitigation options for decision making in sto-
chastic SC environments. Combined with an integration of addi-
tional time buffers which may be established by longer standard
shipping times, Fan et al. (2014) identify postponement as an ef-
fective way to cope with SC disruptions. In that paper, an enu-
meration is used to get the optimal expected annual SC costs, but
the enumeration is only effective for pure binary small scale pro-
blems with a limited number of scenarios. Furthermore, the re-
lationships between optimal SC transportation modes and prob-
abilities of catastrophic scenarios have not yet been explored.

Apart from some small problem instances, stochastic optimi-
zation problems are notoriously hard to solve. A common ap-
proach to deal with stochastic problems in practice is scenario
analysis. This approach decomposes a stochastic problem into a
number of solvable sub-problems. PH has been applied in solving a
number of stochastic programming problems (Voß and Woodruff,
2006), such as network problems (Mulvey and Vladimirou, 1991,
1992; Crainic et al., 2011), fishery problems (Helgason and Wal-
lace, 1991; Wallace and Helgason, 1991), power system optimiza-
tion (Takriti et al., 1996; Santos et al., 2009), resource allocation
problems (Watson and Woodruff, 2011), and lot-sizing problems
(Haugen et al., 2001). PH represents a solution technique that
determines a solution which performs well for all scenarios of the
multi-scenario problem. The algorithm is proved to be convergent
for convex problems (Rockafellar and Wets, 1991). It utilizes the
variable split form of the multi-scenario program. The non-
anticipativity constraints of a stochastic model are integrated into
the objective function as penalty and multiplier terms, and are
progressively enforced by an iterative procedure (Mulvey and
Vladimirou, 1991). In our research, PH is used for solving our
stochastic programming model.

Helgason and Wallace (1991) show how to implement a sce-
nario aggregation procedure in a simplified version of PH by sol-
ving the individual scenario problems only approximately, using
an integrated application of a Lagrangian approach. They propose
that solving the subproblems exactly amplifies oscillations of the
individual scenarios, which then has to be dampened with
stronger penalties. A drawback of this approach is that increasing
the penalty slows down the speed of the algorithm. Therefore,
exact solutions of the scenario problems are rarely used. Lokke-
tangen and Woodruff (1996) provide a first implementation of
general-purpose methods for finding good solutions to multi-
stage, stochastic mixed-integer (0,1) programming problems. Tabu
search is used for subproblems and PH is used to coordinate
blending the subproblem solutions. The method is verified to be
effective by computational experiments. They mention that
without a good, integer-feasible solution during the initial itera-
tion of PH, the solution will be hardly integer feasible.

In the existing research, PH as a scenario-based decomposition
technique is applied in diverse research areas. One controversial
issue has been the selection criterion of the penalty parameter of
PH. Empirical tests are employed to examine the effect of various
internal tactics on the algorithm's performance. Mulvey and Vla-
dimirou (1991) report that the proper choice of a value for the
penalty parameter depends on the problem structure. The effects
of dynamic penalty adjustments and inexact subproblem solutions
are evaluated in this paper. Fan and Liu (2010) propose similar
conclusions in their paper. They postulate that on the contrary
values of penalty parameters result in a slow convergence towards
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the optimal solution, and high values of penalty parameters pro-
duce faster initial convergence, but may arrive at a suboptimal
solution. Until then, no explicit criteria have been identified in
order to set adequate values of the penalty parameters. Watson
and Woodruff (2011) develop novel and simple methods for de-
termining element-specific penalty parameter values based on
problem-specific data. Computational results show that in order to
get a good performance the values of the penalty parameter ρ
should be proportional to the unit costs of the items in the supply
chain. The paper provides explicit methods of fixing the value of
the penalty parameter ρ for the first time.

In order to generalize the application of PH as an effective
heuristic that generates approximate solutions for multi-stage
stochastic programs, PySP is introduced by Watson et al. (2012).
PySP is a means to rapidly prototype and solve multi-stage multi-
scenario programming problems. By leveraging the combination of
a high-level programming language (Python) and the embedding
of the primary deterministic model in that language (Pyomo), PySP
provides completely generic and highly configurable solver im-
plementations for stochastic programming (Watson et al., 2012).
3. Problem statement

SCs are increasingly prone to complexity and uncertainty,
especially for global supply chains. According to an investigation
report of 196 organizations from more than 22 industries by Par-
tida (2013), 83 percent of the survey respondents had experienced
at least one unexpected SC disruption in the last 24 months. Of
those who had experienced a disruption, 78 percent believed that
they should draw the sustained attention to possible disruptions.
However, quantification and modeling of SC risk is still a challenge
in the field of SCRM (Heckmann et al., 2015; Ho et al., 2015). It
motivated us to provide SC executives decision support by quan-
tifying SC disruption risks and modeling SCs in stochastic
environments.

The papers Heckmann et al. (2015) and Fahimnia et al. (2015)
address the same points that environmental factors and sustain-
ability should be considered in SCRM. Sustainability risk is pointed
out to be an emerging stream in the SCRM area in Fahimnia et al.
(2015). In this background, slow steaming, as an eco-friendly and
cheaper transportation mode, has attracted more ocean carriers'
attention (Meyer et al., 2012). However, many shippers oppose the
practice due to increased pipeline inventory associated with
longer transportation time (Maloni et al., 2013).

Another motivation for our research is to investigate the ap-
plication of slow steaming from the perspective of a global supply
chain. From our initial computational results in Fan et al. (2014),
slow steaming is applied for global SCs in stochastic environments.
This important finding stimulated our interests of investigating
the application of different transportation modes in global SCs in
stochastic environments. The most convenient way is to simulate a
SC with a stochastic programming model. In our simulation re-
sults, the best transportation plan of a SC has slow steaming for
certain products on certain transportation links. It means that
applying slow steaming in a proper way enables an eco-friendly
flexible supply chain, especially for long distance transportation.

In order to quantify and model SC disruption risks, impacts
after a SC catastrophe have to be analyzed in detail. The worst
impact from SC catastrophes is possibly not from direct economic
losses, but the underlying harm from the delay in meeting the
demand of final products, and the impaired reputation induced
from unmet demand. Hence, satisfying the demand of final pro-
ducts – in particular if a crucial node or an important transporta-
tion link is destroyed – is a key factor of a flexible and successful
supply chain.
One of the most common strategies for getting rid of high
negative impacts of low frequency catastrophic disruptions is to
keep buffer stocks of products (Gupta et al., 2000). The buffer
stocks keep the SC working during the time for adopting a con-
tingency plan, such as asking for internal or external help, if a node
or a transportation link is destroyed by a catastrophe. Two crucial
issues of keeping inventory are where to locate it, i.e., where to
build warehouses (or just stocks), and how to manage it. Without
considering SC costs at first, the safest way might be to set up
warehouses at each crucial node in the supply chain. But this
strategy comes along with another problem: What happens if one
of the warehouses and its nearest SC node are both destroyed at
the same time?

For instance, 173 people died and about 22,000 new cars from
Toyota, Volkswagen, Renault and others were largely destroyed in
the Tianjin port explosions on 12 August 2015 (The Guardian,
2015). Negative impacts of this catastrophe for Volkswagen and
Renault are limited because both of them have enough inventory
in China. Whereas for Toyota, not only nearly 5000 new cars of
Toyota's local joint venture were damaged; three of its factory
lines shut down after explosions due to the stockout of parts
(Automotive Purchasing, 2015). According to an industry analytics
firm, the plant shutdown costs Toyota 2200 vehicles a day in lost
productivity (IHS Automotive, 2015). In this case, inventory of cars
at the local joint venture of Toyota won't reduce negative impacts
from the Tianjin port explosions. Although the direct economic
loss at the incident was refunded by insurance companies at last,
indirect loss caused by stockout of cars for Toyota is huge. Ac-
cording to the record of Toyota's sales volume in the mainland of
China (Sohu, 2015), Toyota had a gross sales loss of at least 35,000
cars in August and September 2015 (Fig. 1). From this point of
view, even SCs with well-defined inventory strategies are still
vulnerable in catastrophic environments.

An additional and more flexible strategy for coping with SC
catastrophes is to use different transportation modes. This strategy
utilizes the savings of transportation time if a low-speed trans-
portation mode is replaced by a faster transportation mode.
Therefore, this strategy generates time buffers which may assure
even in case of a destroyed node in a SC that supplies of the final
products suffer less or even no negative impacts, which depends
on the time savings obtained from accelerated transport of
products.

The capacity of time buffers generated from varying transpor-
tation modes depends on the distance of a transportation link as
well as the difference of speed (or transportation time) between
the low-speed and the faster transportation mode. When slow
steaming is used as a transportation mode for a long-distance
transportation, a SC has a bigger capacity of time buffers. For in-
stance, according to the sea route database at “Ports.com”, trans-
portation times from Shanghai to Hamburg are 28.4 days with a
slow steaming speed (18 knots), 18.9 days with a fast steaming
speed (27 knots), and two or three days by air. In this case, the
capacity of time buffers ranges from 9.5 days to as many as 25
days.

Variable transportation modes provide an additional degree of
freedom in SC disruption risk management. Products in transit
appear as a type of inventory which helps providing buffer time
once a catastrophe happens.

A comparison between low-speed transportation and high-
speed transportation is presented as follows. For each product on a
long distance transportation link (for example, from a node A, say
Shanghai, China, to a node B, say Hamburg, Germany), we have
two strategies to cope with SC disruption risks (Fig. 2): either
Strategy 1 – keeping a high level of stock in the warehouse at the
downstream node B and transport products with a high-speed
transportation mode, or Strategy 2 – keeping a lower level of stock



Fig. 1. Toyota's sales volume in the mainland of China from June 2015 to November
2015.
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in the warehouse at node B and transport products with a low-
speed transportation mode. Suppose that the quantities of pro-
ducts in transit plus stock in the warehouse for both strategies are
the same, and transportation batch sizes are also supposed to be
the same.

Assume, for instance, a disruptionwhere a warehouse at node B
is destroyed by a catastrophe, compared to Strategy 1, Strategy
2 has longer buffer time before stockout due to more products in
transit. If the production capacity at the upstream node is limited,
stockout is more easily to happen for products with Strategy 1.
Furthermore, Strategy 2 has more advantages: lower transporta-
tion costs, less Greenhouse Gases (GHGs) emissions and lower
storage costs. Although it may be more likely for Strategy 2 to
experience transportation delays, buffer stock in the warehouse at
node B will help to reduce the negative impacts from transporta-
tion delays effectively. In this sense, reducing the inventory level at
a warehouse and using a low-speed transportation mode may
enable a more flexible SC without increasing SC costs. This will
also make the SC more eco-friendly.

The explanations above suggest the conclusion that variable
transportation modes represent an appropriate approach to make
SCs more flexible. In the following, this is to be investigated in
more detail.

In order to make use of the flexibility of variable transportation
modes, an initial transportation mode for each transportation link
in the SC should be fixed at a proper level. A SC with pre-
dominantly low-speed transportation modes has more available
buffer time to manage a catastrophic event than a SC with pre-
dominantly high-speed transportation modes, but it also suffers
higher capital holding costs due to more products in transit. SCs
Fig. 2. High-speed and higher inventory
with tight lead time constraints are to be obliged to implement
only few transport links with a low-speed transportation mode. In
this case, low-speed transportation modes should be only used for
crucial products on crucial links. We note in passing that there is
quite some literature on load-dependent lead times; see, e.g., Pahl
et al. (2007).

In our investigations, SC catastrophes refer to SC nodes or
transportation links. If a catastrophe happens in a node of a supply
chain, this node becomes dysfunctional for a certain period of
time, ranging from a couple of days or weeks up to a couple of
months - depending on the severity of the catastrophe. If a cata-
strophe happens on a transportation link of the supply chain, this
effects that products in transit through this destroyed transpor-
tation link are delayed for some time, e.g., a couple of days. Various
SC catastrophes constitute the investigated scenarios. They are
represented by a moderate number of discrete realizations of the
stochastic quantities. A decomposition of a stochastic program
across scenarios partitions the investigated problem into man-
ageable subproblems. This enables an efficient use of parallel
processors (Mulvey and Vladimirou, 1991). According to this
characteristic, the process of calculating SC costs is decomposed
into two stages: SC costs without considering any catastrophe are
assumed to be the first stage costs. The corresponding first stage
decisions include decisions regarding the initial transportation
modes of transportation links, which are scenario invariant. Extra
SC costs during the reconstruction time after catastrophic events
are regarded as second stage costs. Transportation modes on the
transportation links are adjusted by the second stage decision in
order to gain available time for implementing alternative plans
after catastrophes. The second stage transportation mode adjust-
ment depends on the realization of the catastrophe and the first
stage transportation modes since buffer times of the SC have been
fixed when the first stage decisions are made.

PH is used for solving the two-stage multi-scenario SC model.
Solutions for a multi-scenario problem become convergent by
adding penalty and multiplier terms to the objective function in
each iteration. PySP provides a convenient platform based on PH
to solve this type of problems. However, PySP has not been used
widely, and the selection criterion of the penalty parameter, as
mentioned above, has been a controversial issue. In order to find
solutions with a good quality, we also test the performance of PySP
with different selection criteria of the penalty parameter ρ.
4. Model description

The model will be described in detail in this section. The as-
sumptions and the scenario tree will be explained at first, then the
model formulations will be presented.
vs. low-speed and lower inventory.



Fig. 3. An example of a supply chain.
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4.1. Assumptions

Fig. 3 shows an example of a supply chain, which motivates our
model. Raw materials and parts are provided by suppliers, and
semi-finished products are fabricated in processing centers. Final
products which are made from semi-finished products are fina-
lized in the assembling centers. Afterwards, they are shipped to
distribution centers. Final products are transported from dis-
tribution centers to retailers who sell them to local customers.

Referring to the frequency of assessment of SC resiliency and
exposure to disruption risk in the investigation report of Partida
(2013), about half of the investigated organizations conduct these
assessments every 12 months or less, about 40 percent conduct
these assessments sporadically or only after a major disruption
incident. In our research, we assume that a SC assesses cata-
strophic risks on a longer time basis such as a year. Except of
natural disasters, other factors, such as driver strikes, delays at
customs, port congestion, or containers not being returned, also
result in transportation delays. Thus, severe SC transportation
delay risk is assessed on a shorter time basis such as a season or a
month. The parameter time horizon is defined according to the
frequency of a possible disruption.

Catastrophic events require extra time to adapt SCs to such an
incident. The length of extra time depends on the complexity of
appropriate emergency plans. Extra time for catastrophic events
referring to transportation links is a couple of days; in case of a
catastrophic event referring to crucial SC nodes a couple of weeks
or more may be required. Additionally, a catastrophe induces extra
costs due to, e.g., overtime working costs. These costs are variable
because the recovery time ranges from a couple of days up to a
couple of weeks, depending on the severity of a catastrophe and
the importance of the destroyed node.

In our model, three transportation modes for each transporta-
tion link are considered. They represent a high-, a medium- and a
low-speed transportation mode and come along with different
transportation costs and transportation times. Furthermore, capi-
tal holding costs, which depend on the holding time and the ca-
pital holding quantity, are also included in the SC costs. The model
is a two-stage decision model. Each transportation mode of each
product on each transportation link of a SC is specified by a de-
cision variable. The transportation modes of transportation links
are determined on the first stage. On the second stage, after the
occurrence of a catastrophe the transportation modes of trans-
portation links may be changed. All transportation mode decisions
are represented by binary variables.

In the context of the first stage decision, let us assume that we
produce according to a make to order policy. Then no storage is
taken into account. Stockout costs arise if stockouts of products
happen due to catastrophic events. However, the second stage
decision takes into account storage costs if inventories are built up
after the selection of a faster transportation mode. Furthermore,
SCs with lead time constraints and also SCs without lead time
constraints are explored in our experiments.

Two different SC structures, one with implemented and an-
other one without implemented postponement strategies, are in-
vestigated in our computational experiments in order to de-
termine features of flexible transportation mode planning. One out
of three transportation modes is chosen for each product for each
transportation link with the first stage decision. Transportation
modes can be changed after the occurrence of a catastrophe. All
activities in the SC can be performed in an alternative location by
an associated external partner, except for the assembling center.
The alternative assembling activity is provided by an internal
partner. The alternative partners provide the same or similar
products or services as the original one. The alternative location is
assumed to be far away from the original one which means it is
unlikely that both the original node and also its alternative node
are destroyed simultaneously after a catastrophe. Two assembling
centers, one located close to the processing center and another one
located close to the foreign market, are the internal alternative
partners of each other. For assembling centers with shorter dis-
tances to a foreign market we assume that they have higher labor
costs than assembling centers with longer distances to the foreign
market. If the assembling center in a foreign area is destroyed, the
products can be finalized by the internal partner who provides a
combined processing and assembling center which may provide
reduced assembling costs. Regarding the considered time horizon,
to ease exposition, it is assumed that no more than one cata-
strophic event occurs.

Transportation plans are made with the consideration of the
assessment of catastrophic risk. Once a catastrophic event happens
in a real case, the SC will need to assess catastrophic risks again,
transportation plans will also be adjusted according to the latest
assessment of catastrophic risks. The focus of this paper is on SC
disruption risks. This includes the investigation that a SC node, for
example a port which is used for transferring crucial products,
may be destroyed, or the transportation of products is delayed on
a transportation link. Demand fluctuation which belongs to op-
erational risk is not taken into our consideration. Hence, customer
demand is assumed to be constant in the model. Note that the two
stages in our model are not defined according to a chronological
order. In lieu thereof, the first stage represents decisions con-
sidering any catastrophic scenarios, and the second stage in-
corporates decisions in order to manage the negative effects a SC is
suffering with after the event of a catastrophic scenario.

4.2. Scenario tree

A two-stage scenario tree is shown in Fig. 4. An innovative idea
of our stochastic programming model is that stages are not



Fig. 4. A two-stage scenario tree.
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referring to time stages. The root node which belongs to the 1st
stage represents SC costs during a time period without considering
any disruptions. Each leaf node represents a possibility of extra
costs due to a disruption during this time period which belongs to
the 2nd stage. The advantage of setting time independent stages is
that the solution of the model will not be impacted by the moment
a disruptive event occurs. We assume that the risk for every day is
the same in the considered time horizon. In most of the cases, we
may have the knowledge about the severity of a disruption such as
the length of the period that a factory cannot work after a fire or
an explosion, but it would be hard to predict when the disruptive
event will happen. This kind of low probability event is normally
out of the consideration of SC executives, but the negative impacts
are huge.

According to the parameters in our model, a risk evaluation of a
global SC in a time interval should be made at the first step. The
length of the time interval depends on a supply chain's environ-
ment. A scenario tree is generated based on risk evaluation (Fan
et al., 2015). For each scenario, these parameters are required: the
involved node or transportation link, the recovering time of the
involved node, the probability of this scenario. Except of all dis-
ruption scenarios, a further scenario is without any catastrophe for
the global supply chain. The summation of the probabilities of all
scenarios should be equal to one. With all required parameters,
PySP will eventually provide a good solution for a problem. The
solution will maintain good levels of time buffers with con-
sideration of all scenarios in the scenario tree.

4.3. Model formulation

We consider a SC network Net¼(N, Conn) where N is the set of
nodes and Conn is the set of arcs between the nodes.

Set

N Set of nodes
S Set of suppliers, ⊂S N
RW Set of retailers/wholesalers, ⊂RW N
P Set of products
Pi Set of products ⊂P Pi at node ∈i N
Conn Set of transportation links ×N N between the nodes in
the supply chain

K Set of scenarios

Parameters

T Time horizon
Cp i

O
i

Operational cost per unit of product ∈p Pi i at node ∈i N

Cp ik
O

i
Operational cost per unit of product ∈p Pi i at node ∈i N
for scenario ∈k K

Cp i
P
i

Purchasing cost per unit of product ∈p Pi i at node ∈i N

Cp ik
P
i

Purchasing cost per unit of product ∈p Pi i at node ∈i N
for scenario ∈k K

Cp ij
Th
i

Costs of high-speed transport per unit of product ∈p Pi i
from node i to node j, ( ) ∈i j Conn,

Cp ij
Tm
i

Costs of medium-speed transport per unit of product
∈p Pi i from node i to node j, ( ) ∈i j Conn,

Cp ij
Tl
i

Costs of low-speed transport per unit of product ∈p Pi i
from node i to node j, ( ) ∈i j Conn,

Cp ij
TP
i

Transportation cost of product ∈p Pi i between nodes i
and j, ( ) ∈i j Conn,

Cp ijk
TP
i

Transportation cost of product ∈p Pi i between nodes i
and j, ( ) ∈i j Conn, during catastrophe k ∈ K

Tp ij
h
i

Time for high-speed transport of product ∈p Pi i between
nodes i and j, ( ) ∈i j Conn,

Tp ij
m
i

Time for medium-speed transport of product ∈p Pi i be-
tween nodes i and j, ( ) ∈i j Conn,

Tp ij
l

i
Time for low-speed transport of product ∈p Pi i between
nodes i and j, ( ) ∈i j Conn,

Tp iji
Transportation time for product ∈p Pi i between nodes i
and j, ( ) ∈i j Conn,

Tp ijki
Transportation time for product ∈p Pi i between nodes i
and j, ( ) ∈i j Conn, during catastrophe k ∈ K

Tp p ij
n r2
i j

Time interval of product ∈p Pi i being finished and sent
out from node ∈i N until it is transformed into the final
product pj and sold at retailer ∈j RW

Tp p ijk
n r2
i j

Time interval of product ∈p Pi i being finished and sent out
from node ∈i N until it is transformed into the final pro-
duct pj and sold at retailer ∈j RW after catastrophe k ∈ K

LTpi
The longest SC lead time of ∈p Pi i

Q p p iji j
Number of products ∈p Pi i needed to make one unit of
product ∈p Pj j, ( ) ∈i j Conn,

Ch Per period holding cost coefficient of capital lockup
Dp ii

Demand per period of product ∈p Pi i at retailer ∈i RW

Cp
Stockout
i

Per unit penalty cost coefficient for unmet demand of the
final product ∈p Pi i

Tp i
Stockout
i

Time period of stockout of product ∈p Pi i at retailer
∈i RW

Cp
I
i

Per unit storage cost coefficient of the final product
∈p Pi i

Tp i
I
i

Storage time of product ∈p Pi i at retailer ∈i RW

Tk
R Reconstruction time of the destroyed node after a cata-

strophe in scenario ∈k K
rk Probability of scenario ∈k K within the time horizon T
Cp i

Cum
i

Cumulated costs per unit of product ∈p Pi i after being
finished at node ∈i N , including purchasing costs, trans-
portation costs of related materials from its upstream
nodes, holding costs of these materials during transpor-
tation and operational costs of ∈p Pi i at node i ∈ N

Cp ik
Cum

i
Cumulated costs per unit of product ∈p Pi i after being
finished at node ∈i N during the reconstruction period
of a catastrophe in scenario ∈k K

Tk
ex Extra time when using the alternative node after the

catastrophe in scenario ∈k K
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Ck
SCtot Total SC costs in scenario ∈k K

CSC1 First stage SC costs – SC costs without considering im-
pacts of catastrophes

Ck
SC2 Second stage SC costs – extra SC costs during the re-

construction time of scenario ∈k K

First stage decision variables

yp ij
h

i
Selection of a high-speed transportation mode for pro-
duct ∈p Pi i between nodes i and j if =y 1p ij

h

i
, otherwise

=y 0p ij
h

i
, ( ) ∈i j Conn,

yp ij
m

i
Selection of a medium-speed transportation mode for
product ∈p Pi i between nodes i and j if =y 1p ij

m

i
, other-

wise =y 0p ij
m

i
, ( ) ∈i j Conn,

yp ij
l

i
Selection of a low-speed transportation mode for pro-
duct ∈p Pi i between nodes i and j if =y 1p ij

l

i
, otherwise

=y 0p ij
l

i
, ( ) ∈i j Conn,
Second stage decision variables (after the realization of catastrophic
scenarios):

yp ijk
h

i
Modification variable for a high-speed transportation
mode for product pi ∈ Pi in scenario k ∈ K between nodes

i and j, ( )+ ∈ { }y y 0, 1p ijk
h

p ij
h

i i
, ( ) ∈i j Conn,

yp ijk
m

i
Modification variable for a medium-speed transportation
mode for product pi ∈ Pi in scenario k ∈ K between nodes

i and j, ( )+ ∈ { }y y 0, 1p ijk
m

p ij
m

i i
, ( ) ∈i j Conn,

yp ijk
l

i
Modification variable for a low-speed transportation
mode for product pi ∈ Pi in scenario k ∈ K between nodes

i and j, ( )+ ∈ { }y y 0, 1p ijk
l

p ij
l

i i
, ( ) ∈i j Conn,
Objective function:

∑ *

( )
∈

r Cminimize

subject to 1

k K
k k

SCtot

SC costs for scenario ∈k K :

≔ + ( )C C C 2k
SCtot SC

k
SC1 2

Stage one:

Total costs at retailers ∈i RW :

∑≔ * *
( )∈ | ∈

C C D T
3

SC

p P i RW
p i
Cum

p i
1

i i
i i

Purchasing costs of product ∈p Pi i from suppliers:

≔ ∀ ∈ ∈ ( )C C i S p P, 4p i
Cum

p i
P

i ii i

Costs per unit of product ∈p Pj j:

∑ ∑≔ * + * * * + *

+ ∀ ∈ ∈ ( )

( )∈ ∈

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟C C Q C C Q T C Q

C p P j N, 5

p j
Cum

i j Conn p P
p i
Cum

p p ij
h

p i
P

p p ij p ij p ij
TP

p p ij

p j
O

j j

,
j

i i
i i j i i j i i i j

j

Time interval between product ∈p Pi i being finished until it is
transformed into the final product pr and sold at retailer ∈r RW :
≔

∀ ∈ ( ) ∈ > ∈ ∈ ( )

T T

r RW i r Conn Q p P p P, , , 0, , 6a

p p ir
n r

p ir

p p ir r r i i

2
i r i

i r

≔ +

∀ ∈ ∧ ∈ ∣( ) ∉ ( ) ∈

> ∉ ∈ ∈ ∈ ( )

T T T

r RW i N i r Conn i j Conn

Q j RW p P p P p P

, , , ,

0, , , , 6b

p p ir
n r

p ij p p jr
n r

p p ij r r i i j j

2 2
i r i j r

i j

Lead time constraints:

≤ ∀ ∈ ∈ ∈ ∈ ( )T LT i S j RW p P p P, , , 7p p ij
n r

p i i j j
2
i j j

In order to ensure that only one transportation mode is se-
lected for a product on the transportation link from node ∈i N to
node ∈j N , we set the transportation mode constraints as follows:

+ + = ∀ ∈ ( ) ∈ ( )y y y p P i j Conn1 , , 8p ij
h

p ij
m

p ij
l

i ii i i

∈ { } ∀ ∈ ( ) ∈ ( )y y y p P i j Conn, , 0, 1 , , 9p ij
h

p ij
m

p ij
l

i ii i i

Transportation time of product ∈p Pi i from node i to node j
while ( ) ∈i j Conn, :

≔ * + * + *

∀ ( ) ∈ ∈ ( )

T y T y T y T

i j Conn p P, , 10

p ij p ij
h

p ij
h

p ij
m

p ij
m

p ij
l

p ij
l

i i

i i i i i i i

Transportation costs of product ∈p Pi i from node i to node j
while ( ) ∈i j Conn, :

≔ * + * + *

∀ ( ) ∈ ∈ ( )

C y C y C y C

i j Conn p P, , 11

p ij
TP

p ij
h

p ij
Th

p ij
m

p ij
Tm

p ij
l

p ij
Tl

i i

i i i i i i i

Stage two:

Per period SC extra costs during the reconstruction time of
scenario ∈k K :

( )∑ ∑

( )

≔ − * * + * + *

∀ ∈

∈ ∈

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

12

C C C D T T C T C

k K

k
SC

i RW pi Pi

piik
Cum

pii
Cum

pii k
R

pii
Stockout

pi
Stockout

pii
I

pi
I2

Notice that the finalizing of products may be moved to an area
with lower labor costs, if an overseas assembling center is de-
stroyed. It is possible that Ck

SC2 is negative in this case which means
that SC costs decrease in case of a destroyed overseas assembling
center (though this may be over-compensated by other cost
values).

The modification factors of an appropriate transportation mode
after a catastrophe are indicated by y y,p ijk

h
p ijk
m

i i
and yp ijk

l

i
.

∈ { − }

∀ ∈ ( ) ∈ ∈ ( )

y y y

p P i j Conn k K

, , 1, 0, 1

, , , 13

p ijk
h

p ijk
m

p ijk
l

i i

i i i

+ + = ∀ ∈ ( ) ∈ ∈ ( )y y y p P i j Conn k K0 , , , 14p ijk
h

p ijk
m

p ijk
l

i ii i i

+ ≥ ∀ ∈ ( ) ∈ ∈ ( )y y p P i j Conn k K0 , , , 15ap ij
h

p ijk
h

i ii i

+ ≥ ∀ ∈ ( ) ∈ ∈ ( )y y p P i j Conn k K0 , , , 15bp ij
m

p ijk
m

i ii i

+ ≥ ∀ ∈ ( ) ∈ ∈ ( )y y p P i j Conn k K0 , , , 15cp ij
l

p ijk
l

i ii i

The desirable transportation mode is selected by adding a
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transportation mode modification variable y y,p ijk
h

p ijk
m

i i
or yp ijk

l

i
to

corresponding transportation mode variables y y,p ij
h

p ij
m

i i
and yp ij

l

i
,

respectively. In case of changing a transportation mode after a
catastrophe, the values of the modification variables referring to
the current transportation modes become �1, the values of the
modification variables referring to the desirable transportation
modes become 1, and the remaining modification variables should
be 0. For example, if the original transportation mode of ∈p Pi i on
the transportation link of ( ) ∈i j Conn, is a low-speed mode
( ≔ ≔ ≔ )y y y0, 0, 1p ij

h
p ij
m

p ij
l

i i i
, in case of a catastrophic event ∈k K it

needs to be switched to the high-speed mode
( ≔ ≔ ≔ − )y y y1, 0, 1p ijk

h
p ijk
m

p ijk
l

i i i
. If the transportation mode variable

and the transportation mode modification variable refer to the
same transportation mode together, an acceleration of transpor-
tation takes place ( ≔ ≔ ≔ )y y y1, 0, 0p ij

h
p ij
m

p ij
l

i i i
. The constraints in (15a)-

(15c) ensure that transportation mode values remain valid after a
modification:

( ) ( ) ( )≔ + * + + * + + *

∀ ( ) ∈ ∈ ∈ ( )

T y y T y y T y y T

i j Conn p P k K, , , 16

p ijk p ij
h

p ijk
h

p ij
h

p ij
m

p ijk
m

p ij
m

p ij
l

p ijk
l

p ij
l

i i

i i i i i i i i i i

( ) ( ) ( )≔ + * + + * + + *

∀ ( ) ∈ ∈ ∈ ( )

C y y C y y C y y C

i j Conn p P k K, , , 17

p ijk
TP

p ij
h

p ijk
h

p ij
Th

p ij
m

p ijk
m

p ij
Tm

p ij
l

p ijk
l

p ij
Tl

i i

i i i i i i i i i i

Purchasing costs of product ∈p Pi i from suppliers for scenario
∈k K :

≔ ∀ ∈ ∈ ∈ ( )C C i S p P k K, , 18p ik
Cum

p ik
P

i ii i

Costs of per unit product ∈p Pj j for scenario ∈k K :

∑ ∑

( )

≔ * + * * * + * +

∀ ∈ ∈ ∈

( )∈ ∈

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

19

C C Q C C Q T C Q C

p P j N k K, ,

pjjk
Cum

i j Conn pi Pi
piik
Cum

pipjij
h

piik
P

pipjij piijk piijk
TP

pipjij pjjk
O

j j

,

Time interval of product ∈p Pi i being finished and sent out
from node ∈i N until it is transformed into the final product pj and

sold at retailer ∈j RW after a catastrophe:

≔

∀ ∈ ( ) ∈ > ∈ ∈ ( )

T T

r RW i r Conn Q p P p P, , , 0, , 20a

p p irk
n r

p irk

p p ir r r i i

2
i r i

i r

≔ +

∀ ∈ ∧ ∈ ∣( ) ∉ ( ) ∈

> ∉ ∈ ∈ ∈ ( )

T T T

r RW i N i r Conn i j Conn

Q j RW p P p P p P

, , , ,

0, , , , 20b

p p irk
n r

p ijk p p jrk
n r

p p ij r r i i j j

2 2
i r i j r

i j

Stockout time of the final product pj:

{ }= + −

∀ ∈ ∈ ∈ ( )

* *

* *

* *T T T T

j RW p P k K

max 0,

, , 21

p j
Stockout

p p i jk
n r

k
ex

p p i j
n r

i i

2 2
j i j i j

Node *i in Formula (21) indicates the location of a catastrophe
in scenario ∈k K , which means that node *i is destroyed or a
disruption happens on the transportation link ( * ) ∈i j Conn, . The
stockout time in Formula (21) refers to unmet demand of final
products at each retailer. The available time after a catastrophe in
scenario k is **Tp p i j

n r2
i j

, the latest batch of products on the upstream

side of the destroyed site arrives at the retailers after time period
+**T Tp p i j

n r
k
ex2

i j
. If this batch of products is not able to arrive during the

available time period, unmet demand of final products gets
penalized.
Inventory holding time of the final product pj after accelerating
transportation:

{ }≔ − + −

∀ ∈ ∈ ∈ ( )

* *

* *

* *T T T T

j RW p P k K

min 0,

, , 22

p j
I

p p i jk
n r

k
ex

p p i j
n r

i i

2 2
j i j i j

According to our assumptions for the proposed model, there are
no inventories if catastrophes are assumed to be absent. However,
short time intervals with inventory may exist if the transportation
of items is accelerated after a disruption. In this case, inventory
costs are charged. Furthermore, inventory costs also ensure that
the slack time obtained from changing transportation modes is
only used as much as needed after emergencies.

In order to show the feasibility of the model and the quality of
SP solutions, computational experiments with different SC struc-
tures and parameters will be conducted in the next section. Ac-
cording to our computational experiments, a few general man-
agerial insights will be presented, too. Furthermore, it will provide
additional managerial insights for a SC executive by using para-
meters of a SC from the real world.
5. Computational results

In order to evaluate the quality of solutions of our stochastic
programming model (SP solutions) and deduce some general im-
plications, 276 instances of SC parameters are randomly designed
in our computational experiments. Wait-and-see solutions are the
benchmarks for all our computational results. Wait-and-see solu-
tions can be achieved only when there is no uncertainty. For each
instance, a SP solution is solved based on a set of representative
scenarios. To evaluate the expected SC costs of SP solutions in
practical applications, one thousand scenarios, which are
independent from the representative scenarios, are generated
based on the prediction of disruptions to simulate real cases. The
expected SC costs for these scenarios will be calculated based on
SP solutions. The quality of SP solutions can be identified through
the comparison between SP solutions and wait-and-see solutions.
The respective gaps of expected SC costs between SP solutions and
wait-and-see solutions are calculated and presented in this sec-
tion. For each SP solution, a gap is obtained from dividing the
expected SC costs for one thousand scenarios based on the SP
solution by the expected SC costs for these scenarios based on
wait-and-see solutions. The gap indicates the quality of the SP
solution. A small gap indicates a better quality than a large gap. In
Figs. 5–8, it is a gap between the line inside a box and the dash
line. In addition, the expected SC costs of solutions of decision
makers with neutral, optimistic and pessimistic attitudes regard-
ing the occurrence of disruptions will be analyzed and compared
with the results of SP solutions.

The results are classified into four groups. In order to figure out
the number of representative scenarios for generating SP solu-
tions, the quality of SP solutions with respect to a different number
of representative scenarios is analyzed in the first investigation
(Section 5.1). A second investigation deals with SCs with a very
low risk (around 10% in the considered time horizon), a medium
risk (around 50% in the considered time horizon) and a very high
risk (around 90% in the considered time horizon) of catastrophic
events (Section 5.2). Our third investigation is concerned with
impacts from postponement strategies in stochastic catastrophic
environments (Section 5.3). Furthermore, the impacts from dif-
ferent types of SC disruptions will be analyzed in Section 5.4. In
this section, the results are classified into four groups with respect
to four different types of disruptions: (1) disruptions at a crucial
supplier, (2) disruptions at a distribution center, (3) disruptions at
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Fig. 6. Gaps of SP solutions for catastrophic events with different probabilities.
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a processing center, (4) disruptions during long-distance interna-
tional transportation of products. Finally, transportation modes for
SP solutions are analyzed in order to give guidelines for SC ex-
ecutives (Section 5.5).

In our computational experiments, scenarios for instances are
generated with Python 3.5 (installed with scipy and numpy). The
extra time for an alternative strategy Tk

ex is assumed to be ex-
ponentially distributed which ranges from 5 to 15 days. The re-
construction time after a catastrophe Tk

R is assumed to be normally
distributed which ranges from 10 to 40 days. The time horizon for
a severe catastrophe is 360 days, and 90 or 30 days for a medium
or minor catastrophe. All these parameters are defined according
to the frequency and the severity of a potential disruption. In our
model, the disruption should not happen more than once during
the considered time horizon. In order to satisfy this condition, the
time horizon should be defined based on the historical frequency
of a type of catastrophic events.

All SP solutions are generated with PySP (Pyomo 4.2, Gurobi
6.5) on a Linux server with 2 CPUs (Intels Xeons Processor E5-
2630 v3, 20M Cache, 2.40 GHz). The computing time for an in-
stance with 200 scenarios is around 200 s for each PH iteration.
The number of iterations are different for our instances and ranges
from 2 to 200, as a user-defined maximum iteration number.

5.1. Analysis of the number of representative scenarios

In order to determine the number of representative scenarios
for our computational experiments, the quality of SP solutions
with respect to a different number of representative scenarios will
be analyzed.

Four groups of SP solutions are generated with 50, 100, 150 and
200 representative scenarios, respectively. Gaps of these SP solu-
tions are shown in Fig. 5. SP solutions with 50 representative
scenarios are unstable, although the median of gaps is around 1%.
SP solutions with 150 and 200 scenarios show better quality and
stability. In order to make sure that we obtain high quality SP
solutions, 100, 150 or 200 scenarios are used for the subsequent
computational experiments.

5.2. Analysis of disruptions with different probabilities

In our computational experiments, the quality of SP solutions
are different for catastrophic events with different probabilities.
Gaps of SP solutions for catastrophic events with low, medium and
high probabilities are shown in Fig. 6.
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Fig. 5. Gaps of SP solutions with different number of respective scenarios. The line
inside a box is the median. The box encloses 50% of the values within the box. A
plus sign shows a value outside the corresponding box.
Compared with medium and low probability catastrophic
events, SP solutions for high probability catastrophic events show
smaller gaps (mostly less than 1%). The expected SC costs of SP
solutions in high probability catastrophic environments are
usually less than 1% higher than the expected SC costs of wait-and-
see solutions. Most of SP solutions for low probability catastrophic
events also show good quality, but not as stable as SP solutions for
high probability catastrophic events. For medium probability cat-
astrophic events, SP solutions have the biggest gaps, although they
are mostly less than 3%. This finding points out a topic for the next
step – to improve the quality of SP solutions for SCs with medium
probability catastrophic events.

5.3. Analysis of different SC structures

The impacts from SC postponement strategies will be analyzed in
this section. Results for two different SC structures, with and with-
out implemented postponement strategies, are classified into two
groups (PP and NPP). Gaps of SP solutions as well as solutions of
decision makers with neutral, optimistic, and pessimistic attitudes
regarding the occurrence of breakdowns are presented in Fig. 7. In
stochastic catastrophic environments, decision makers with opti-
mistic attitudes always ignore possible catastrophic events. They
make decisions based on the assumption that catastrophic events
will never happen. On the opposite side, decision makers with
pessimistic attitudes always prepare for the worst case. Pessimistic
managers make decisions based on the assumption that the cata-
strophic event will happen at the worst situation. Unlike the former
two decision makers, once identifying a possible catastrophic event,
decision makers with neutral attitudes will prepare for the cata-
strophic events according to the assumption that the catastrophic
event will happen at an average level of severity.

In Group PP, all solutions perform better than solutions in
Group NPP. SP solutions show the best quality and stability, while
solutions of the optimistic decision makers show the worst quality
and stability. In particular, gaps of solutions of the neutral and
pessimistic decision makers in Group PP are very close to the
benchmarks. From the comparison of SP solutions and the solu-
tions generated by the experiments with different decision makers
(optimistic, pessimistic, and neutral) in Group PP, we find out: In
low risk environments, most SP solutions are similar to or even the
same as solutions of decision makers with optimistic attitudes. In
high risk environments, most SP solutions are similar or even the
same as solutions of experiments for decision makers with pes-
simistic attitudes. Similar rules do not work for SCs without im-
plemented postponement strategies (Group NPP).
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From this point of view, we conclude: Compared with SCs
without implemented postponement strategies, SC structures with
implemented postponement strategies are more flexible in sto-
chastic catastrophic environments. This conclusion brings us to
conduct more experiments to explore further differences between
SC structures of PP and NPP in Section 5.4.

5.4. Analysis of different types of disruptions

Except of the probability of catastrophic events and the SC
structures, the types of catastrophic events impact the quality of
SP solutions, too. But the impacts of disruption types to different
SC structures are different. Thus, in Fig. 8, results are presented in
eight sub-graphs with respect to two SC structures (PP and NPP)
and four types of disruptions, i.e., supplier disruptions, distribution
center disruptions, processing center disruptions and transporta-
tion delays.

In Fig. 8, most of the solutions in PP sub-graphs have smaller
gaps than the corresponding solutions in NPP sub-graphs. For SCs
with PP structure, gaps of SP solutions and solutions of the opti-
mistic decision makers are zero for three types of disruptions, i.e.,
supplier disruptions (PP), processing center disruptions (PP) and
transportation delays (PP). In the sub-graph of transportation de-
lays (PP), SP solutions and solutions of the neutral, optimistic and
pessimistic decision makers are as good as wait-and-see solutions.
Solutions of the optimistic decision makers have the biggest gaps
in all NPP sub-graphs.

In order to find out general rules for transportation mode se-
lection from these computational experiments, we investigated
transportation modes for each solution in detail. We found that
the transportation modes for the final products significantly im-
pact SC costs. In low risk environments, high-speed transportation
modes are applied for most of the final products, medium- and
low-speed transportation modes are applied for most of materials
and semi-finished products. Meanwhile, the transportation modes
for products' long-distance transportation significantly impact the
flexibility of SCs. Adopting medium- or low-speed modes for the
products' long-distance transportation enables more flexible SCs.

For SCs with PP structure, semi-finished products are transported
for long-distance links with medium- or low-speed transportation
modes for SP solutions and solutions of the optimistic decision ma-
kers in low risk environments. In this case, SCs with a PP structure are
flexible to cope with stochastic catastrophic disruptions.
For SCs with NPP structure, the final products are transported
for long-distance links with high-speed transportation modes for
SP solutions in low risk environments. In this case, in order to keep
latent time buffers for coping with stochastic catastrophic dis-
ruptions, the final products' long-distance transportation have to
be medium- or low-speed which will significantly increase SC
costs. Otherwise, SCs will experience huge economic losses once a
catastrophic event occurs. This is consistent with solutions of the
optimistic decision makers.

In this section, computational results and transportation modes
analysis reveal the same insight as Section 5.3 that in stochastic
catastrophic environments, the SC structure of PP is more flexible
than the SC structure of NPP.

5.5. Analysis of transportation modes

In addition to the findings discussed above, further managerial
insights are found by analyzing transportation modes of SP solu-
tions which also provide guidelines for SC planners:

1. Low-speed transportation modes are only used for inexpensive
items if transportation distances are moderate and lead time
constraints are not too tight.

2. For long distance transportation, high- and medium-speed
transportation modes are usually selected for valuable products,
such as final products. Low-speed transportation is only used
for these product types in case of very tight lead time
constraints.

3. In low risk environments, low- or medium-speed transportation
is applied for the majority of unprocessed raw material or parts,
while high-speed transportation modes are used for the trans-
portation of most final products.

4. In high risk environments, especially for distribution center
disruptions, the most favorable transportation modes for
transports of final products to retailers with a high demand as
well as to retailers nearby distribution centers are always low-
or medium-speed transportation modes.
6. Application of the stochastic programming model

According to the investigations of Partida (2013), global
SCs mostly operate in stochastic environments. Our stochastic
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Fig. 8. Gaps of solutions for different types of catastrophic events.
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programming model copes with potential future catastrophic
disruptions involving a flexible SC with latent time buffers during
transportation of products. Variable transportation modes are
used as a strategy for enabling a flexible supply chain. Rather than
an ex post strategy (or a rescue plan), our strategy is an ex ante
strategy.

A framework of applying our stochastic programming model in
practice is presented in Fig. 9. With the prediction of a potential
catastrophic event's severity, a scenario generator is developed
based on the probability distributions of parameters associated
with the severity. A number of scenarios will be generated by the
scenario generator as inputs of our stochastic programming model
(Section 4). Incorporating with these scenarios and parameters of
a SC, the stochastic programming model can be solved by PySP.
Each SP solution represents a transportation mode plan. Notice
that prediction methods are not the focus of this paper.
With an adequate SC structure and an appropriate transpor-
tation mode planning, the SC will have flexibility for coping with
catastrophes. Our model is able to provide decision support for
global SC executives in order to plan the transportation modes for
different products, especially for the long distance transportation.
Due to the fact that the structure of a global SC and the global SC
environment are dynamic, the transportation mode decision
should be adjusted in fixed time intervals such as a month or a few
months, or after a catastrophe. It indicates that in stochastic cat-
astrophic environments, transportation mode planning for global
SCs should be adjusted in fixed time intervals.

Our stochastic programming model is especially applicable for
SCs in the environments with potential catastrophic events. For
these catastrophic events, the severity and frequency/probability
can be forecasted based on the historical data, but the time of their
occurrence cannot be predicted in advance. In order to deal with



Fig. 9. A framework of applying the stochastic programming model.
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this type of catastrophic events, SC planning based on variable
transportation modes represents a promising approach. By using
the stochastic programming model that we developed in this pa-
per, high quality solutions will be generated with PySP.
7. Conclusion

In this paper, an adjustment of the transportation speed of
products was considered as an innovative way to obtain buffer
time to manage catastrophic risks in a supply chain. This paper
made several contributions to the field of SC disruption manage-
ment. First, SC disruption risk was quantified and a two-stage
multi-scenario stochastic programming model was developed in
order to analyze SCs with stochastic events like catastrophes. From
a research perspective, our paper fills the research gap of modeling
and quantifying flexibility with a set of given parameters. Solu-
tions of our stochastic programming model provide decision
support for SC executives in order to select proper transportation
modes and enable a flexible supply chain. Second, the application
of flexible transportation modes has been investigated in detail as
an additional strategy to manage SC disruption risks. By using
slower transportation speed for certain products on certain
transportation links, a SC can become more flexible with reduced
storage levels at warehouses. With this background, slow steam-
ing, as a typical slow speed and eco-friendly transportation mode,
will be adopted more extensively to enable a flexible and sus-
tainable supply chain.

Furthermore, in order to find out general rules for transporta-
tion mode selection for products, results from 276 instances were
collected and analyzed. The calculation in order to identify the
most appropriate transportation modes for raw materials, semi-
finished products as well as final products (SP solutions) takes
place with PySP. Each SP solution was compared with wait-and-
see solutions as benchmarks to evaluate the quality of the SP so-
lution. Our simulation results manifest that SP solutions were al-
ways superior to solutions of decision makers with neutral, opti-
mistic and pessimistic attitudes regarding the occurrence of
disruptions.

The results were the basis for diverse managerial insights: SCs
with implemented postponement strategies were more flexible in
stochastic catastrophic environments. The transportation modes
for the final products significantly impact SC costs. The transpor-
tation modes for products' long-distance transportation sig-
nificantly impact the flexibility of SCs. SCs with a predominant
number of products using a low-speed transportation mode were
highly flexible in high risk environments, but in case of tight lead
time constraints, only a very limited number of products, namely
the most valuable products were able to use low-speed transpor-
tation modes.

The best strategy to cope with short-term SC disruptions and
disruptions at distribution centers is to save slack time during the
transport of final products. In case of long-term SC catastrophes,
the best strategy to cope with these disturbances is to save slack
time during the transport of raw material as well as during the
international transport of final products. Further results show that
SCs with implemented postponement strategies are more flexible
than SCs without implemented postponement strategies, because
the best transportation modes of products in case of implemented
postponement strategies are identical both in high-risk and low-
risk environments.

Most importantly, these findings were based on a somewhat
limited number of computational experiments. Nevertheless, with
data of the real world, our model provides decision support in
detail for a specific SC of a real case.

Regarding the solution technique, we investigate different se-
lection criteria for the penalty parameter of the applied PH-algo-
rithm. We are able to point out for almost all of our instances that
the best performing solutions are obtained with an element-spe-
cific penalty parameter criterion proposed by Watson et al. (2012).

To conclude the paper, utilizing/implementing variable trans-
portation modes is an additional strategy to cope with SC dis-
ruption risks. By quantifying SC disruption risks and considering
transportation modes as variables, the two-stage multi-scenario
stochastic programming model proposed in our paper will provide
decision support to enable flexible and sustainable supply chains.
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Appendix

The progressive hedging algorithm proposed by Rockafellar and
Wets (1991) is a well-known approach within the area of sto-
chastic optimization. It is supposed to converge to a global opti-
mum in the convex case. In the non-convex case, if sub-problems
are solved to local optimality, it is supposed to converge to a local
optimal solution. Here we describe our application of PH to let the
reader know the details of our related implementation. For a more
general description see the original reference; some general con-
text is provided by Römisch and Schultz (2001). According to
Watson et al. (2007), the probability of each scenario ∈s S is de-
noted by ( )Pr s . The goal is to minimize expected cost, which can be
written

∑ ( )( × )

∈
∈

Pr s c x

x Q

minimize

s. t. :

s S

s

where the use of the decision vector ( = ∀ ∈ )x x x s S,s that does not
depend on the scenario implicitly implements the non-antici-
pativity constraints that avoid allowing the decisions to depend on
the scenario. For such an optimization problem, the basic PH
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algorithm can be stated as follows, taking a perturbation factor
ρ > 0 as the sole input parameter:
1. ≔k 0
2. For all scenario indices ∈s S

≔ ( × ) ∈( )x c x x Qargmin :s x s
0

3. ¯ ≔ ∑ ( ) ×( )
∈

( )x Pr s xs S s
0 0

4. ρ≔ ( − ¯ )( ) ( ) ( )w x xs s
0 0 0

5. ≔ +k k 1
6. For all scenario indices ∈s S

ρ

ρ

≔ ( × ) + × + − ¯ ∈

≔ + − ¯

( ) ( − ) ( − )

( ) ( − ) ( − ) ( − )⎜ ⎟⎛
⎝

⎞
⎠

x c x w x x x x Q

w w x x

argmin /2 :s
k

x s
k k

s

s
k

s
k

s
k k

1 1 2

1 1 1

and

∑¯ ≔ ( )( )

∈

( )x Pr s xk

s S
s
k

7. If the termination criteria are not met, then go to step 5.

The termination criteria are based mainly on the convergence of
the ( )xs

k to a common x̄.
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