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A B S T R A C T

Accurately evaluating opportunities in new and emerging science and technologies is a growing concern. This
study proposes an integrated framework for identifying a range of potential innovation pathways and com-
mercial applications for solid lipid nanoparticles – one particularly promising contender within the field of nano-
enabled drug delivery. Several text mining techniques – term clumping, SAO technique, and net effect analysis –
as well as technology roadmapping, are combined with expert judgment to identify the main areas of R&D in this
field, and to track their evolution over time. Through analysis, data from multiple sources, including research
publications, patents, and commercial press, reveal possible future applications and commercialization oppor-
tunities for this emerging technology. We find that research is moving away from materials and delivery out-
comes toward clinical applications. The most promising markets are pharmaceuticals and cosmetics; however,
the “time-to-market” is much shorter for cosmetics than it is for pharmaceuticals.

The most significant contributions of this paper have been highlighted as follows. One innovation is ex-
tracting the intelligence from three kinds of data sources after in-depth considering their characteristics and
matching with the features of different technology development stages to identify innovative research topics.
The second one is combining SAO technique with net effect analysis to identify what the evolutionary links
between research topics are, and then to use TRM to visualize the evolution of the main areas of R&D over time.

1. Introduction

New and emerging science and technology has attracted great at-
tention among scholars because of its tremendous potential to improve
society and stimulate economic development. However, the threats and
opportunities inherent in such technologies can cause developers to
proceed with caution. On the one hand, the existing competitive ad-
vantages inherent in current technological competencies offer stability,
and new technology may threaten these advantages or even eliminate
entire markets. On the other hand, early analysis of new technical areas
may present opportunities to take the lead before other competitors
become entrenched (Guo et al., 2015). Therefore, developing ways to
assess the current research focus and future development directions of
new and emerging science and technologies is a compelling issue.

Technology opportunity analysis (Porter et al., 1994), which applies
data mining and text mining tools to ST&I resources to detect techno-
logical innovation (Ma et al., 2014 and Ma et al., 2016) offers one

possible solution to this problem. The process allows analysts to explore
opportunities for transforming new technologies into new products and,
thus, provides decision support to researchers, R&D planners and
managers, and science policy-makers (Lee et al., 2015). A number of
technology opportunity studies that rely on text mining technologies
have been conducted to help derive information for competitive tech-
nical intelligence analysis, technology development trend analysis (Ma
and Porter, 2015), and forecasting (Ailem et al., 2016; Song et al.,
2017).

However, such studies have shown limited success at forecasting
future developments. Despite advancements in this area through some
novel approaches, such as forecasting innovation pathways (FIP)
(Huang et al., 2014; Robinson et al., 2013), morphological analysis
(Yoon et al., 2014), and subject–action–object (SAO)-based semantic
patent analysis (Wang et al., 2015, 2017), it is still difficult to delve into
technological details, such as subsystem roles and the entire R&D
landscape. And it is still hard to track the relationships among evolving
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technologies and markets over time. Further, the potential applications
of new technologies are nebulous, making their future innovation
pathways highly uncertain. Technology opportunity analysis for new
and emerging science and technology still poses notable challenges, and
its efficiency needs further improvement.

As part of the ongoing advance of nanotechnology, nano-enabled
drug delivery systems are rapidly becoming serious contenders in ad-
dressing pharmaceutical challenges, such as solubility, cost reduction,
disease targeting, and lifecycle extension (Zhou et al., 2014). Solid lipid
nanoparticles (SLNs) have become promising contenders within nano-
enabled drug delivery because of some of their unique properties, such
as their small size and large surface area, which offer improved delivery
performance of pharmaceuticals, nutraceuticals, genes, and vitamins
(Lingayat et al., 2017; Nair et al., 2012). Consequently, in time, gath-
ering technical intelligence and exploring the potential innovation
pathways SLNs may take in its early stages could provide valuable
support for researchers and R&D administrators when making deci-
sions.

This study proposes an integrated framework for capturing a variety
of potential innovation pathways and commercialization options for
SLNs. Our analysis stretches from raw data to technological in-
telligence, and our method includes text cleaning, term clumping,
context-relevant insights, and pathway visualization. Our data are de-
rived from multiple sources including research publications, patents,
and commercial press.

2. Related work

2.1. Core technologies within novel technology opportunity analysis

We have combined several different approaches to accomplish our
novel technology opportunity analysis framework for new and emer-
ging science and technology. This section provides an overview of the
term clumping, subject-action-object (SAO) technique, and technology
roadmapping (TRM) techniques incorporated into our framework.

2.1.1. Term clumping
Clustering of terms is a powerful aid in detecting topics and their

relationships in a collection. Term clumping concerns text objects (in-
dividual terms or phrases) and their adjacent properties and can be used
to clean and combine terms to enhance topic coverage (Kostoff and
Block, 2005). Trivial words and phrases are usually removed before the
clustering process to improve overall accuracy.

The notion of term clumping was proposed by Bookstein's group
(Bookstein et al., 1998). Their research focused on the clumping
properties of content-bearing words and also measured clumping
strength to address similarities among terms. They believed that the
term with the largest deviation from a Poisson distribution might have
the greatest content-bearing value (Bookstein et al., 2003). Later,
Trumbach and Payne (2007) proposed a “concept-clumping algorithm”
with the potential to improve the technical specificity of term clusters.
Their method generates a list of technically relevant noun phrases and
calculates synonymous terms through a rule-based algorithm. The most
significant contribution of this algorithm is that it improves the preci-
sion of clumping groups of different term lengths. In 2014, Zhang and
Porter proposed a suite of term-clumping steps to produce a final list of
cleaned and consolidated terms and phrases. First, less informative
terms, such as stopwords, general terms, academic terms, general sci-
entific terms, are removed by applying several thesauri. Then, fuzzy-
matching routines are used to consolidate similar terms, combine term
networks, and prune and screen the lists. This approach reduces the
term set substantially and greatly improves the quality of the terms that
can be used to generate more meaningful core clusters (topics) (Zhang
et al., 2014).

Later, this refined process was combined with principal components
analysis (PCA), which has been widely accepted by researchers as a way

of generating a more balanced factor set, with examples done in the
dye-sensitized solar cell and biotech domains (Wang et al., 2014; Zhou
et al., 2014). One noteworthy point of this process is that the most
frequent terms are excluded since it is believed that these terms are too
general to reflect specific areas. However, in our research, we find that
high-frequency terms can show areas of major research, which may
help to identify research foci within the overall SLN domain. Con-
sidering our research aims, this analysis process was useful after making
some revisions. Selected high-frequency terms were retained, once
common terms and fuzzy-matched (similar) terms had been removed
during data preparation.

2.1.2. Subject-action-object (SAO) technique
To identify the innovation pathways for technology, most research

focuses on the content of the innovation, meaning the new technology
or its application. Term clumping and clustering algorithms, such as
PCA or factor analysis, can be applied to extract these “innovative
contents.” However, another issue in gauging the pathway of an in-
novation is the lack of a credible method that is widely accepted by
academia. Faced with this situation, some researchers have turned to
the SAO technique with moderate success. In this technique, the subject
(S) is the noun or phrase that reflects the new technology or solution.
The action (A) is the verb or verb phrase that demonstrates how to solve
the problem. And the object (O) is the noun or phrase that represents
the old technology or the problem that has been solved. In this way, an
SAO structure emphasizes two technologies and the semantic re-
lationship between them, thus enabling researchers to glean a more
complete understanding of how a technology is evolving.

In recent years, text mining combined with an SAO technique has
been used to gauge technology innovation pathways. Yoon et al. (2013)
extracted SAO structures from a patent dataset and calculated the se-
mantic similarities between “S” and “O” to effectively predict tech-
nology development trends. Through deeply mining the meaning of
SAOs, Zhang et al. (2014) identified innovation processes of dye-sen-
sitized solar cells and illustrated the process with an informative
mapping technique. Later, Guo et al. (2016) combined extracted SAOs
from patent information with morphology analysis to depict the tech-
nical evolution pathways of dye-sensitized solar cells.

Although the SAO technique has had a great effect on identifying
the specific innovation processes in an evolving technology area, it also
has obvious drawbacks in relationship identification and data source
selection which we will discuss in some detail in Section 2.1.3.

2.1.3. Technology roadmapping
The use of TRM traces back to Willyard and Mcclees (1987) and

their application of the method in Motorola's developmental planning.
From that point on, TRM became widely used by agencies and com-
panies to represent the macro scale development of new technologies.
TRM not only indicates the direction of future technological develop-
ments, but also potential trends in R&D and its connections to current
product development. A search for “technology roadmap*” in Web of
Science (WoS) renders a total of 652 publications. Of those, 212 pub-
lications have appeared in the last five years.

Generally, retrospective TRM and prospective TRM are the two
branches of TRM research. For the prospective TRM research, qualita-
tive analyses, which include literature studies, expert opinion gath-
ering, and delphi-based analyses contribute heavily. Lee et al. (2012)
conducted an empirical analysis of TRM on the basis of classical com-
munication theory. They proposed six hypotheses focusing on the fac-
tors that improve TRM's credibility. Preisler et al. (2012) gathered in-
formation gleaned from workshops and interviews with diverse market
players, including manufacturers, business enterprises, building devel-
opers, research institutions, and political decision makers, to construct
a TRM for solar thermal cooling in Austria. Zhang et al. (2016) em-
ployed literature analysis, on-the-spot investigation and expert discus-
sion to set up a six-step analysis method to plan the development
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progress of coal mining technology in Shannxi province. These ex-
amples showed expert engagement is a very effective way for predicting
the future developmental trajectory, especially for macro-level fore-
sight, such as national technology planning, but they are also time-
consuming and costly. In addition, these qualitative approaches depend
on expert judgment, which may be heavily influenced by personal ex-
perience and cannot easily gain consensus among different experts.

Another branch of TRM research is about retrospective analyses. In
this domain, data constitute the core ingredient – empirical analyses,
rather than expert opinion based. This kind of TRM mainly relies on
statistical analyses and data mining techniques, which can provide the
detailed information for depicting the development process of a target
technology or a product from its beginning to the present. Choi et al.
(2013) used the concept of “function” to develop a quantitative TRM.
The most significant contribution in their research is the information
they provide on the uses and purposes of a technology, not just the
keywords. Considering the lack of research on how and which in-
formation can be used to construct a TRM, Yoon and Phaal (2013) fo-
cused on the characteristics of significant data and presented an ap-
proach to structure technological information drawn from raw data
through several data mining techniques. Later, Zhang et al. (2015a,
2015b) proposed an approach that constructs TRMs semi-auto-
matically, incorporating multiple sources of ST&I data to gauge in-
novation patterns for new and emerging science and technologies.

This research merges multiple-sources of intelligence to improve the
usability of TRM in real-world commercial applications. The advantage
of this kind of TRM is that it uses quantitative methods to distinguish
both actual and potential features from objective data. Its disadvantages
include: (1) A tendency to focus on ST&I data (e.g., publication and
patent data) and to only nominally include other kinds of data sources,
like popular, business, and regulatory content. Resulting TRMs did not
benefit from the insights one can draw by connecting basic research
with applications and commercial endeavors. (2) Not all information
can be retrieved from these data sources given the constraints of rea-
sonable access and budgets. (3) Not all publications or patents are
equally valuable. (4) ST&I database coverage temporal lags can lead to
incomplete data.

Furthermore, since SAO-based TRM is a popular research branch of
data-driven TRM, and we will use this combined method to predict the
potential innovation pathways in our research, more in-depth com-
parisons between current research approaches can be noted. In this
paper, we zoomed in and compared SAO-based TRM research from the
perspectives of data resources, research approaches and research aims
& advantages in some depth. We retrieved five years of publications
from WoS, yielding 25 records. After reviewing these publications
thoroughly, we classified the researchers into three groups in terms of
research relevance. From Table 1 we see that they had great con-
tributions on identifying the core topics and tracing the specific re-
lationships/functions among these topics. However, some limitations

deserve note. The first is the lack of a broad data source to identify the
real research issues. From their research, most of the intelligence was
retrieved from patents (Choi et al., 2013; Guo et al., 2016; Wang et al.,
2017; Yoon et al., 2013). Although some researchers tried to obtain
information from publications (Zhang et al., 2015a, 2015b), they em-
ployed publications and patents separately instead of combining them
together to solve the same research question such as figuring out the
key topics of a continuously evolving domain. A second drawback is
that current research in the SAO technique is able to find the re-
lationship between one “point” and another “point” (Wang et al., 2017;
Zhang et al., 2014), i.e., a very specific technology, but it cannot
identify links between clusters that contain suites of related technolo-
gies.

To reduce drawbacks thus noted in previous research, we tried to
make some improvements in our research. Based on accurately char-
acterizing the technological development stages, this paper aims to
predict the innovation directions with most potential. To attain this
aim, two efforts should be made. On the one hand, we draw upon the
advantages of a TRM based on SAO semantic analysis, as well as further
enhance insight by applying net effect analysis to identify real re-
lationships among key research topics, and then trace the development
path. We also consider the characteristics of different types of data in
our efforts to input multiple data sources into the TRM's construction,
which can help us to look through the intelligence from basic research
to real commercial practices. On the other hand, we emphasize the
value of generating an expert-driven TRM for forecasting the potential
innovation pathways, enriched via review by knowledgeable domain
professionals.

2.2. Solid lipid nanoparticles

In this paper, we focus on SLNs, which belong to the class of lipid
nanoparticles. These special kinds of nanoparticles are able to keep a
stable physical state and are therefore able to overcome some limita-
tions other traditional colloidal carriers, such as emulsions and lipo-
somes, cannot. Because of their good release profiles, SLNs' prominent
advantages have attracted special interest over the past decade in tar-
geted drug delivery. Currently, SLNs, and a next generation, nanos-
tructured lipid carriers (NLC), are looking forward to applications in
cosmetics, drug delivery, and clinical medicine, etc. (Naseri et al.,
2015). Unsurprisingly, related industries are paying great attention to R
&D and future commercialization opportunities in this field. Therefore,
identifying the innovation pathways and forecasting the possible com-
mercial directions in this domain promise significant value for aca-
demia and industry.

2.3. Research questions

Upon concluding our deep literature review, it was clear that

Table 1
Comparison of SAO-based TRM studies.

No. Data Research approaches Aims & advantages Leading authors and
related papers

1 Patent SAO
morphology analysis
TRM

It is useful to identify the specific relationships between keywords and to forecast technology
innovation opportunities.

Guo et al. (2016), Wang
et al. (2017)

2 Patent Patent semantic analysis
(SAO)
TRM

(1) Aided by patent semantic analysis to identify the R&D topics, core technologies and
products, and then treating the uses and purposes of a technology from the perspective of
“function.”
(2) Combine SAO semantic analysis and roadmaps to identify hot spots and R&D overlaps
effectively.

Yoon et al. (2013), Choi
et al. (2013)

3 Publications Patents Topic modeling
SAO+TRIZ
Fuzzy set analysis
TRM

(1) Employ topic modeling and fuzzy set analysis to identify core R&D topics by using WoS
publications.
(2) Gain intelligence from patents and try to combine SAO and TRIZ to figure out the real
problem & solutions in one target domain

Zhang et al. (2014,
2015a, 2015b)

X. Zhou et al. Technological Forecasting & Social Change xxx (xxxx) xxx–xxx

3



finding the best and most reasonable way to evaluate and illustrate the
evolving stages of a new and emerging technology was a pressing issue
for industry and academia. It is also a prerequisite for governments that
want to secure an advantageous position in the fierce competition of
future global markets. We, therefore, formulated three key research
questions here:

1. How to determine the main innovative research topics within the
target domain?

2. How can we find the linkages between topics for a continuous
evolving domain?

3. How to visualize the evolution of the main topics over time and
predict the most promising pathways?

3. Methodology

Aiming to address those three research questions, the analytical
process can be divided into three major stages: (1) figuring out the key
research topics and constructing a technical dictionary; (2) identifying
the real linkages between topics; and (3) visualizing and forecasting the
innovation pathways. This section provides an overview of how text
mining techniques and TRM were integrated and combined with expert
judgment to chart the evolution of the main areas of R&D in an emer-
ging technology over time. The details of how we practically applied
this framework (Fig. 1) are illustrated in Section 4.1.

3.1. Overview of the integrated framework

In the first stage, text mining techniques can be used to depict the
key factors of the entire R&D system. Here we generate three steps
(steps A to C) to best harness multiple sources of information and build
a complete technical dictionary in this stage from Fig. 1. In step A, we
retrieved high-quality research reviews to help identify the subsystems
within the target technology and, to flesh out more details. Then, term
clumping, and PCA, a clustering algorithm, were independently applied
to publications, patents, and commercial press items to generate key
terms and better topical factors in step B. In step C, aided by semantic
similarity analysis, our panel of experts then merged and refined those
statistical results to yield a set of the most prominent R&D topics

(clusters), and then a dictionary of technical terms was constructed to
holistically reflect the R&D concepts in the domain.

Followed the outputs – technical dictionary – gleaned from several
text mining steps, the main objective of the second stage is to profile the
potential links among key innovation factors. SAO technique, which is
an useful text mining tool, can be used here to extract useful in-
telligence (i.e. the evolving linkages between topics) from news and
research material. In step D, we used the key terms from our con-
structed technical dictionary as the search terms to retrieve SAO
structures, aided by IHSM Goldfire Innovator (http://invention-
machine.com/factsheet_GoldfireInnovator.html).

As previously mentioned, the actions in SAO structures reflect real
evolutionary relationships between specific technologies (subjects and
objects). Given the focus is on how these technologies evolve, the re-
lationships gleaned from specific SAO structures needed to be appro-
priately grouped. Aided by the technical dictionary, we were able to
determine which research topics the subject and object belonged to for
each SAO structure. So in step E, SAO structures with the same subject
topic and the same object topic, but with different actions, were then
classified into groups. This classification system allowed us to focus on
the specific evolutionary actions within each group, and classify them
according to the net effect they produce – positive, negative, or utility
(usage). Based on the general links between key research topics, we
were able to identify the evolution of each research strand, starting
from the basic research stage through to applied research up until
commercialization.

In the third stage, the main objective is to visualize and project
prospective innovation pathways based on the text mining results
which we obtained from previous stages and expert intelligence. Since
technology roadmapping is a widely accepted tool by combining qua-
litative and quantitative information together to visualize and predict
the macro scale development of new technologies, it is suitable for
achieving our goal in this stage. In this stage, two steps were utilized
here. In step F, the main consideration is how to layout alternative
innovation pathways. Through text analysis, we identified the core
research groups and their correlations to assess the potential market
opportunities and explored each possible innovation. Following con-
vention, our TRM was plotted on two dimensions with the x-axis re-
presenting time, and the y-axis representing the development stage of

Objec�ve:

Visualize & project 

prospec�ve 

innova�on pathways 

Objec�ve:

Profile the poten�al 

links among key 

innova�on factors

Stage 1: Figure out the main topics and establish technical dic�onary
A: Technology descrip�on (Subsystem) 

B: Profile innova�on items (topics and related terms) 
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Fig. 1. Analytical framework.
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the technology (Groenveld, 2007). To show the details, the step G was
applied here. The y-axis was split into three levels: basic R&D, appli-
cation transfer, and commercialization. The refined SAO structures
combined with expert judgment were used to determine the develop-
ment stage. Here, Subjects and Objects are research topics, not specific
technologies. The correlations among the research topics, subsystems,
and technology developmental stages guided which development stages
each topic fell into. Constructing the x-axis (time) was a little more
complicated. After a round of random sample checking, we decided that
the topics which related to basic R&D and extracted from publications
should each be mapped according to the date of their first publication.
Similarly, topics which belonged to application transfer and extracted
from patent applications should be mapped according to the patent
application date, and commercial topics should be mapped according to
the release date of the report. It became important to treat research
topics from each of the three databases differently because each pro-
vides different levels of information. Take one SAO structure retrieved
from publication as an example: “glyceryl behenate SLN loaded with
vitamin A can be applied in cosmetics”. This record mentions two re-
search topics, “drug loaded SLN” and “cosmetics”, and carries the im-
plication that this new nanoparticle has the possibility to be used in
cosmetics in the future, but not already. Therefore, mapping SLNs' entry
into cosmetics market at the time of this news release would be ahead of
its time and, thus, inaccurate. However, individually mapping com-
mercial news, research publications, and patent applications to define
the appearance of “drug loaded SLN” and “cosmetics” separately leads
to a much more detailed and accurate picture of the domain.

VantagePoint desktop software (www.theVantagePoint.com) for
bibliometrics, natural language processing (NLP), data cleaning, ana-
lyses, and visualization was used throughout the process.

Expert judgment also played a crucial role in enriching our em-
pirical analysis. In this study, we invited two kinds of experts to engage
our researches. The first kind of experts are the technical experts who
know the NEST well and can intimately reach out to understand and
characterize its innovation processes. We contacted Professor Younan
Xia (nanomedicine) who directed us to another active researcher Shin
Minsuk, who had been conducting research in this field for several
years. Then another biomedicine-based expert –Dr Xuejiao Zhou joined
our research. The second kind of experts, who are conversant with the
FTA and innovation processes, are text mining analysts. Here, we in-
vited Dr. Douglas Robinson and Jose M. Vicente Gomila, who had ex-
perience in using text mining to analyze biotechnology for many years
to guide this research.

From Fig. 1, we can see that step J, engaging experts, is an iterative
process. In the first stage, technical experts engaged in selecting key
parameters, identifying major topics and subsystems. In the second
stage, technical experts and text mining analysts cooperated in selecting
core SAO structures and grouping the linkages between topics. In the
final stage, text mining analysts played important roles in designing the
contents and layout of innovation pathways. Later technical experts
helped to elicit the future development directions.

3.2. Data collection

SLNs were chosen as the sample because they are a particularly
promising contender in the field of nano-enabled drug delivery. The

search algorithm was based on previous research (Zhou et al., 2013), as
well as terms gleaned from recent review articles. With the help of
experts, we identified terms distinguishing SLN-related activity and
applied these directly to a new search in WoS from Jan 1st, 2000 to Aug
1st, 2016.

Here, we searched for combinations of the terms for one sample
year, then checked the results. One team member (Zhou), who has been
working with these data for five years, read a random subset of 30
abstract records for each search segment and judged them as being
strongly related to SLN or not. If the target rate exceeded 70% or better,
we accepted the search string. Otherwise, it was revised or excluded.
After checking all the search terms, we formed the SLN search set using
the three refined term combinations indicated in Table 2. The funda-
mental SLN research record set contained a total of 5176 WoS abstract
records.

We used similar search strings and checking processes to retrieve
SLN-related records from the patent database, Derwent Innovation
Index (DII). DII provides “second order” patent data, meaning that
Derwent (Thomson Reuters formerly, now Clarivate) indexers rewrite
the abstract and add indexing to aid user understanding of the patents.
We conducted our search on the title, abstract, and keyword fields and
set the time interval from Jan 1st, 2000 to Aug 1st, 2016, too. We also
gathered SLN-related records for the same date range from the com-
mercial database ABI/Inform, which contains business-oriented news,
working papers, and reports. A total of 1136 patent records and 440
ABI/Inform records were retrieved.

4. Case study

The following case study demonstrates one practical application of
the integrated framework outlined in the previous section and profiles
the evolution and future prospects of SLN and the next generation of
nano-enabled drug delivery systems.

4.1. Constructing the technical dictionary

The first step of this stage is “term clumping” which entails applying
a set of thesauri, fuzzy-matching algorithms (to capture slight varia-
tions in terms), and Visual Basic scripts to group related terms together,
using VantagePoint software (www.theVantagePoint.com).

Before treating the data, we imported the SLN publication data into
VantagePoint and merged the four WoS fields containing topics: title,
abstract, keywords (authors), and Keywords Plus. 89,000 nouns and
noun phrases were extracted using VantagePoint's natural language
processing (NLP) system, which were then reduced to 13,800 elements
through term clumping. From those clumped terms, we chose the 500
most frequently occurring terms and phrases for further analysis. After
having our experts check the terms to remove some general and less
interesting terms (like solid lipid nanoparticles, development, pre-
paration, characterization, etc.) we were left with 445 terms for ana-
lysis. The DII and ABI/Inform data were treated with similar proce-
dures, resulting in 263 and 177 clumped terms, respectively.

The next step uses PCA to identify and group terms that occur to-
gether in records more frequently than chance would indicate. We used
the PCA tools in VantagePoint followed by a manual review by the
domain experts to arrive at our final set of topics. Using WoS

Table 2
The SLN search strategy in WoS.

No. Search terms Number of records

1 TS= ((SLN* or NLC* or SLM*) and (carrier* or nanocarrier* or nanoparticle* or nanosphere* or microparticle*)); 3116
2 TS= ((“Solid* lipid*” or “Nanostruct* lipid*”) near/3(carrier* or nanocarrier* or nanoparticle* or nanosphere* or microparticle*)) 4060
3 TS= ((lipid* near/3 solid*) and (nanocarrier* or nanoparticle* or nanosphere* or microparticle*)) 3707
Total 1# or 2# or 3# 5176
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publication data as an example to illustrate this process, VantagePoint's
PCA resulted in 19 topical factors with high-loading terms from the
original set of 445 terms. During the expert review, four largely un-
related topics were deleted, oxidative stress, Escherichia-coli, lipoproteins,
and transmission electron, and two factors focusing on similar subjects
were combined, drug loading and drug dissolution, to result in 14 major
topics from the publications dataset. Applying the same logic and
process for DII and ABI/Inform, we arrived at 9 and 15 topics, re-
spectively. Each topic may have appeared in one or more of the data-
bases, so, after comparing and semantic analyzing the final lists from
the three databases, the final number of topics was refined to 18 clus-
ters.

Exploring the subsystems in SLN research is a vital part of tracking
the dynamics of emergence. Since reviews mainly summarize the cur-
rent developmental progress of research and typically indicate the fu-
ture prospects of the domain under scrutiny, we felt such publications
would hold great value in identifying subsystems. Therefore, we fo-
cused on “reviewing the reviews” to identify the main subsystems.

We started with the 7247 documents tagged as “reviews” or “re-
views and book chapters” from a nano-enabled drug delivery (NEDD)
WoS dataset which we got from previous research (Zhou et al., 2013).
[Note that this search focus on NEDD is considerably broader than our
analysis of SLN, an NEDD sub-technology.] Here we should emphasize
that the search terms of retrieving NEDD dataset focused on nano-
carriers such as nano-materials, but not drugs or other particular
practical areas. Such efforts can largely reduce the biases which led
search toward some certain applications. We also selected new reviews
from our new SLN - WoS dataset. With the aim of selecting a re-
presentative set of recently published, high-quality reviews, we whit-
tled these down to 17 for further study, based on total times cited, cited
reference count, publication year, journal impact factor, and review
titles (related to SLN) as the criteria. The reason why we choose the
WoS dataset rather than a broader dataset is because the value of
publications indexed by WoS is widely accepted. Indeed, the lack of
other data resources may reduce the credibility of the final outputs, so
we invited technical experts to check our intermediate results to im-
prove credibility. Our review combined with experts' judgements
proved invaluable in developing familiarity with the prominent R&D
topics for SLN and gaining perspective on subsystem identification. The
four major subsystems in SLNs include: products (pharmaceuticals/
cargo), SLNs and related materials (nano-enabled as distinct from tra-
ditional forms of drug delivery), delivery processes and outcomes (de-
livery processes and related effects), and target markets (application
domains). After careful study of the literature, we arranged the 18
major topics with their closely-related terms into the subsystems as
shown in Table 3.

4.2. Identifying the evolutionary pathways

The next stage relied on Goldfire Innovator software to extract SAO
structures from the data. Subjects and objects were matched with the
key terms in the technical dictionary and, after text analysis, 16 un-
matched (but high-frequency) SAO structures reflecting actual evolu-
tionary processes in the technology were added to the final list. Again,
an expert review ensured that meaningless or too general SAO struc-
tures were excluded, resulting in 92 SAOs highly-related to the target
domain (WoS: 40, DII: 36, ABI/Inform: 16). To identify the broad
evolutions among the topics, we classified the SAO structures into
groups with the same subject topics and object topics but with different
actions. This allowed us to separate broad, but distinct, research evo-
lutions and focus on the specific evolutionary actions within that group.
The actions were then analyzed and classified by their net effect – ei-
ther: a group increase (a positive effect), a group decrease (a negative
effect), or simply group usage. Table 4 lists the general classifications of
the SAO structures.

In this step, technical experts engaged deeply. They looked through

all 92 SAO structures and then judged which groups the actual actions
should belong to. Take one SAO structure “CPB added SLN induce low
toxicity” as an example. Here “induce low” means CPB added SLN can
reduce toxicity. Based on the in-depth semantic analysis, technical ex-
perts assigned “induce low” into negative effect group in this study. So
the general analysis process would be applied in other research, but the
final classification results may slightly vary among case studies. This is
one limitation in this research.

Table 5 shows a sample of our analysis of the 92 SAO structures and
the relationships we identified between the key research topics. Due to
space limitations, only a few examples have been included. “S+O”
means the subject improves, amplifies, upgrades, enhances, or increases
the object in some way. “S−O” means the subject has a negative effect
on the object. “SUO” means the object is applied to the subject; in this
situation, the subject usually reflects a certain product or a target
market.

In total, we identified 25 evolutionary pathways in the SLN domain
from this analysis, from basic R&D efforts to application thrusts, and
onwards to commercialization. In particular, we determined that NLC is
the most active particle. It shows dramatically improved delivery per-
formance in three respects – skin penetration, drug dissolution and
loading, and bioavailability. Also NLC has been connected with three
products (i.e., dermal products, anticancer tools and drugs, and skin-
care products) in three markets to date (i.e., dermatology, cancer, and
cosmetics). Table 6 shows these links. However, to visualize this in-
novation process, determine the correlations between the core research
entities, and forecast what the future may hold for SLNs, we need to
move on to the next step and generate a TRM.

4.3. Identifying and visualizing the innovation pathways of a technology

Data for the TRM's x-axis (time) and y-axis (development stage)
were generated separately. With the help of our domain experts, we
recognized three technology development stages of SLN research: basic
R&D, technology transfer, and commercialization. Topics in the “SLN
related materials & techniques” subsystem were mapped to basic R&D.
Topics in the “delivery processes and outcomes” subsystem were
mapped to technology transfer, and topics from both the “products” and
“target markets” subsystems were mapped to commercialization. These
classifications are shown along the y-axis of the TRM. The x-axis,
measuring time, begins at 1991 with the first appearance of SLN; then
we start the time interval from 2000 with the first data record to 2016
with the last data record. The time a topic appears in a development
stage was mapped independently according to the subsystem to which
it belongs. The topics which related to basic R&D should each be
mapped according to the date of their first publication. Similarly, topics
which belonged to application transfer and commercialization should
be mapped according to the patent application date and the release date
of the commercial report, separately. Here we noted that a topic which
located a certain position on the X-axis just reflected its first appearance
time, not the duration of research on it. A detailed discussion can be
seen in Section 4.1.

By comparing the research stages of these topics over different time
periods, we were able to identify the areas of convergence and diver-
gence in SLN R&D and chart the course of specific applications of a
range of drug delivery segments (e.g., cancer therapies, skin treat-
ments). Domain experts assisted with the review and interpretation of
the observed patterns. Fig. 2 illustrates the technological evolution of
SLNs.

From the TRM, we can see that basic research into SLN began in
1991, but did not attract much attention in the early years (hence, we
constrict the early years in Fig. 2). Once more researchers began to
focus on these kinds of nanoparticles, the field gradually divided into
four directions: drug-loaded SLN, NLC, gene-loaded SLN, and magnetic
SLN.

Superior capabilities in targeted drug delivery and cytotoxicity
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reduction during the delivery process led to increased study of drug-
loaded SLNs from about 2000 onwards. Drug-loaded SLNs are able to
add peptides, proteins, and related drugs into the core of nanoparticles
and release them to target lesions at a controlled rate, which improves
the efficiency of treatment and reduces its negative effects. In 2004, the
emergence of a second generation of nanoparticles, nanostructured
lipid carriers (NLCs), led to a major change in the field. Replacing solid
lipids with a blend of solid and liquid lipids provided a larger drug
loading space, which significantly improved the drug loading capacity.
Compared to drug-loaded SLNs, NLCs showed better performance in
epidermal permeability and bioavailability. Such advantages garnered
wide attention for NLCs from 2004 to 2010, and the number of pub-
lications and patents saw a sharp increase during this period. After
2010, related products, such as sunscreen, were introduced to the
market. In addition to NLCs, gene-loaded SLNs, which first appeared in
2006, were another hot research domain. As a special kind of drug-
loaded SLN, this kind of particle-loaded nucleic acids exhibits simila-
rities to RNA and dsRNA and can deliver therapeutic molecules to
specific cells by way of gene transfection. They are particularly effective

at reducing the cytotoxicity generated by chemotherapy and, because of
this, gene-loaded SLNs are believed to have promising prospects in anti-
cancer therapies. Magnetic-loaded SLNs attract people's attention in
current years. This kind of particle can be used as an MRI contrast agent
and offers great advantages on drug targeting and controlled releasing.

The TRM also shows that 2008 was a critical year. Prior to then,
research into SLNs had just emerged, and most studies focused on basic
R&D, such as new materials. However, after 2008, explorations into
real applications began to surface. For insights into the actual trans-
formation process from basic research through to commercialization,
we focused on the results from our text analysis of patents and com-
mercial news.

Manually zeroing in on the DII manual codes (MCs, a kind of well-
organized patent classification system) helped us to identify how SLN
research had been transformed into applications. Fig. 2 shows the top
five out of 27 core manual codes (not listed here) from the SLN-patent
dataset. Between 2000 and 2007, most patents concentrated on SLN
materials, like fats and lipids [B04-B01B] and polymers [B04-C03].
Then, starting in 2008, more and more patent assignees turned their
attention to drugs and diseases. Anti-cancer [B14-H01], central nervous
system active [B14-J01] and skin treatments [B14-N17] were the re-
presentative pharmaceutical activities during this period. Here we
should note, the number of patents in the delivery processes and out-
comes group was very low; only controlled release agents attracted
attention, as indicated by patenting. This information shows that SLN
patents were still focused on materials and drugs. It is understood that
not all basic technologies can be used in scaled-up production; only a
few promising ones may hold commercial value.

Turning our attention to the analysis results of the commercial data,

Table 3
A technology dictionary for SLN.

No. Subsystem Major research topics Related terms Dataset

1 SLNs and related materials Nanostructured lipid carriers Nanostructured lipid carriers; NLC; Liquid lipid; Binary-mixtures; CoQ10 NLC WoS-SCI, DII,ABI
2 Drug-loaded SLN Nanoparticles SLN; Solid lipid; Tamoxifen loaded SLN; PLGA SLN; CPB-SLN WoS-SCI, DII,ABI
3 Gene-loaded SLN Nucleic acid SLN; pDNAs; Chol-but SLN; Quantum dot; cSLN WoS-SCI, DII,ABI
4 Magnetite SLN MN-SLN; Magnetite SLN; lonic complexation WoS-SCI, DII,ABI
5 SLN delivery Processes &

outcomes
Controlled release Controlled drug-delivery; Controlled release WoS-SCI, DII

6 Drug dissolution/loading Drug loading; Solubility; Dissolution; Nanosuspensions; Drug loading capacity; Solid
dispersions; Dissolution rate; Drug loading efficiency;

WoS-SCI

7 Bioavailability Bioavailability, Oral bioavailability; WoS-SCI, ABI
8 Blood brain barrier Blood-brain-barrier; Central nervous system; BBB WoS-SCI, ABI
9 Gene transfection Gene delivery; DNA transfection; Gene therapy; Plasmid DNA; siRNA; Small interfering

RNA; RNA Interference; RNAi;
WoS-SCI, ABI

10 Cytotoxicity Toxicity, cytotoxicity WoS-SCI
11 Skin penetration Skin penetration; Stratum corneum; Percutaneous-absorption; Skin permeation WoS-SCI,ABI
12 Products Anticancer tools & drugs Chemotherapy; Chemotherapeutic agents, Doxorubicin; Cancer cells; Dox, Tamoxifen;

Anti-cancer drugs; Multidrug-resistance
WoS-SCI, DII,
ABI

13 Imaging Image, Imaging, MRI contrast agent DII, ABI
14 Skincare products UC-blocker, sunshine cream, UC production; Oil in water Cream ABI
15 Dermal products Highly water soluble drug, topical germicidal drug; Zidovudine ABI
16 Target markets Cancer Breast-cancer; Breast cancer cells; Cancer treatment; Cell lung-cancer; tumor cell WoS-SCI, DII,ABI
17 Dermatology Fluticasone propionate, topical germicidal drug WoS-SCI, DII,ABI
18 Cosmetics Cosmetics, Cosmetics industry, Cosmetic products ABI

Table 4
The classification of “actions”.

Classification Related actions

“+” mean increase Improve; amplify; update; replace; is effective for;
enhance; increase

“−” mean decrease Reduce; induce low; depress; inhibit
“U” mean usage Employ; apply; use (be useful); put forward; delivery;

formulate; therapy; treat; introduce

Table 5
Examples of SAO analysis.

SAO structure S A O Year DB

PLGA on SLN reduce burst release Drug-loaded SLN + Control release 2009 SCI
CPB added SLN induce low toxicity Drug-loaded SLN − Cytotoxicity 2011 SCI
SLN delivery of siRNA to tumors… improved cancer chemotherapy Gene-loaded SLN + Anticancer tools & drugs 2007 DII
Docetaxel SLN… is useful as … anti - tumor medicine Drug-loaded SLN U Anticancer tools & drugs 2009 DII
Magnetite-loaded SLNs have advantage … drug targeting and controlled releasing … is introduced in

2013 as MRI contrast agent
Magnetic SLN/Control
release

U Imaging 2013 DII

C0Q10 NLC increase bioavilability … has be applied in oil in water cream (NLC)/Bio-avilability U Skincare products 2011 ABI
Dox depress U87Gcells which is used in cancer therapy. Anticancer tools & drugs U Cancer 2011 ABI
explored organic in NLC … as UC protection cream … introduce to cosmetic industry (NLC)/Skincare products U Cosmetic 2014 ABI
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compared to basic R&D and patent applications, commercial processes
in SLN started later. The first SLN commercial report in ABI/Inform
appeared in 2008, which is unsurprising since commercial clusters are
focused on real applications and markets. In Fig. 2, three applications
are distinct – pharmaceuticals, including cancer, dermatology and
cosmetics. Breast cancer is closely linked to pharmaceuticals and
skincare treatments are closely linked to cosmetics.

In order to lay out the potential development directions, a further
future-oriented discussion is in order. Our forecasting research on SLNs
started in 2013. Professor Alan Porter and Dr. Jing Ma held an SLN
workshop named “Technology Assessment Workshop on Nano-Enabled
Drug Delivery (NEDD) – Keying on Solid lipid Nanoparticles” in Boston
on October 29th, 2013, by gathering 38 technical experts. They pointed
out the alternative innovation pathways, including their prospects, core
factors affecting those prospects, and potential outcomes. Then Dr.
Shim MinSuk and Dr. Xuejiao Zhou continued to focus on the follow-up
research and revised these forecasting results. We organized the in-
formation and then visualized the potential pathways in terms of the
format of a multi-path mapping (Fig. 3) (Robinson and Propp, 2008and
Robinson et al., 2013).

In this map, the Y axis consists of two time intervals: present and the
short future, which shows the next 5 to 10 years. The X axis contains
three levels — promising SLN vectors, core functions/features expected

to be added into the potential products, and potential products &
markets. Fig. 3 suggests that NLC has been widely used by producing
skincare products in its current stage. In this application domain, two

Table 6
Routes within the SLN subsystem.

SLN related materials SLN delivery processes & outcomes Products Markets

Net effect Related- topics Net effect Related- topics Net effect Related- topics Net effect Related- topics

SLN + NLC + Skin penetration U Dermal products U Dermatology
+ Bioavailability U Skincare products U Cosmetics
+ Drug dissolution/loading U Anticancer tools & drugs U Cancer

+ Drug-loaded SLN − Blood brain barrier U
+ Controlled release U
− Cytotoxicity U

+ Gene-loaded SLN − Cytotoxicity
+ Gene transfection U

+ Magnetite SLN + Controlled release U Imaging U

1991 2004 2006 2008 2010 2012 2014

Technology
transfer

Products

Target Market

SLN

Drug-add SLN

Gene-loaded SLN

Basic SLN 
research Magne�c SLN

NLC

Gene transfec�on

CytoxicityControl release

Drug

Skin penetra�on

Bioavailability

BBB

An�cancer drugs

ImagingSkincare productsDermal products

Cosme�cs

CancerDermatology

MC [B14-H01]

MC [B14-J01]

MC [B14-N17]

MC [B04-B01B]
[B04-C03]

e.g. Brain cancer
Breast cancer

Commercial-
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+
+

+

+

+

+

+

U

+
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U

U

U

U
U
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Fig. 2. Technology roadmap for SLN.

Fig. 3. Multi-path mapping for distinguished applications.
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features—skin penetration and bioavailability — are essential. In con-
trast, gene-loaded SLN is the most promising vector in the next stage. It
is assumed as an effective vector to enhance the performance of anti-
cancer drugs. In order to achieve this goal, a low cytotoxic and better
gene transfection efficiency should be addressed as priorities.

Moreover, more valuable information can be captured from Fig. 3
and in-depth investigation. Due to the complex regulations surrounding
pharmaceutical development, the time between product development
and market introduction is much shorter for cosmetics than it is for
pharmaceuticals. This is why, analogously to liposomes, the first lipid
nanoparticle product on the market was a cosmetic product (Pardeike
et al., 2009). Thus, the first innovation pathway for SLNs addressed
applications in the cosmetics industry.

Cosmetic applications for SLNs developed over a long period of
time. In Fig. 2, between 2000 and 2004, research into materials yielded
many achievements. Substance carriers at the nano scale have obvious
advantages in increasing skin hydration and for enhancing the chemical
stability of compounds that are sensitive to light, oxidation, and hy-
drolysis (Pardeike et al., 2009; Rangsimawong et al., 2016). Hence,
many companies tried to apply the technology to their cosmetics during
this period. Later, between 2004 and 2007, scientists began to research
delivery outcomes relating to controlled release and delivery effects in
order to test SLNs' bio-reliability. The low toxicity and cytotoxicity of
NLCs paved the way for wide application in dermal cosmetics (Naseri
et al., 2015).

The vast market potential of SLNs has led many cosmetic companies
to the production of SLN-related technologies in recent years.
Representative products include the coenzyme Q10 (Pardeike et al.,
2009), vitamin A (Argimón et al., 2017), and UV blockers (Suter et al.,
2016). We list the leading companies in this market, namely Kemira
Pigments, Beiersdorf, and IFAC, which were identified as the top patent
applicants and industry leaders in the relevant DII categories from the
ABI/inform data. Upon further investigation, we found that Kemira
Pigments and IFAC have close ties. In 2006, Kemira Pigments acquired
IFAC making Kemira the leading pigment supplier for both the phar-
maceutical and cosmetics industries. Beiersdorf has also done a great
deal of research into SLN cosmetic products. Their most important
products include sunscreen lotions and eye creams, such as Swiss Cel-
lular White Illuminating Eye Essence, which was introduced to the
market in 2007.

Along with developments in cosmetic products, SLN applications in
pharmaceuticals are promising and are regarded as the most important
direction in the next generation. In the latest five years, interests in
pharmaceutical commercialization have already surpassed the cosmetic
industry in the views of industry shareholders. In this domain, anti-
cancer drugs constitute the most popular research topic set. Incyte
Genomics and Sirna Therapeutics are the leading companies in this
area. Founded in 1991, Incyte mainly provides genomics information to
the biotechnology and pharmaceuticals industries. Their research fo-
cuses on developing orally consumed drugs for diseases relating to
oncology and inflammation.

5. Conclusions

In this paper, we combine text mining approaches and TRM to ex-
plore developmental patterns and potential innovation pathways for an
emerging technology. By doing so, we attempt to chronicle a metho-
dology through a case analysis of SLN to illustrate its potential to
contribute useful intelligence for R&D management.

SLN offers a rich case for analysis. This drug delivery approach is
emerging on a variety of R&D fronts to address a growing number of
challenges. For example, in the pharmaceuticals industry, SLNs are
pertinent to solubility, cost-reduction, and targeting diseases; however,
we also discern that patent lifecycle extension is a consideration.
Identifying major R&D topics and market innovation pathways can
inform management of diverse drug delivery opportunities, as well as

developmental hurdles to overcome.
We perused multiple literature reviews to help identify four SLN

subsystems. The term clumping steps cleaned and consolidated topical
content in the text sources to identify 18 prominent R&D topics from
publications, patents, and the commercial press. SAO techniques were
combined with TRM to help track changes in the core topics over time.
We suggest that identifying the correlations among these topics is vital
to the assessment of prospects for future innovation pathways and ap-
plications.

Another interest concerns forecasting the innovation pathways for
new and emerging science and technologies. To accomplish this goal,
we combined multiple data sources to determine how basic research
transitions to development, and then advances toward commercial
products. Our current analytical strategy addresses the developmental
tiers from basic research through to successful commercialization.
Fig. 2 illustrates these layers over the course of time. From Figs. 2 and 3,
we believe SLN has near-term commercial value, since research is
turning toward application options and issues. Such analyses illustrate
the potential to mine R&D information to help gauge the progress of
elements toward commercialization – such as the two important in-
novation pathways depicted for SLNs in Fig. 3.

To help identify the technological threads and corporate links (e.g.,
which companies share research interests and sometimes contribute to
research), we also placed emphasis on analyzing patents and commer-
cial data.

Here we note two innovative parts of this paper. The first one was
combining SAO techniques with net effect analysis to identify the
evolutionary links between research topics. In our research, we did not
focus on the trivial and specific actions between key words, but ob-
tained general links between research topics. Moreover, we employed
net effect analysis to show what the link was (positive or negative)
between two topics, but not just to show there was a link. So the same
analytical logic can be applied in other new emerging technologies.
However, there was one limitation of this part. In this research, the
classification of action keywords relied on the in-depth analysis of the
specific 92 SAO structures by technical experts, so the classification
may slightly vary from case studies. Hence, how to classify action
keywords from the perspective of sentence semantic structure is a core
task in the future.

The second innovation of this paper was presenting a new approach
to identify real innovation topics, core applications and potential
markets by comprehensive utilization of multiple data sources (research
publications, patents, and commercial press). Each data source provides
different types of information. First, we extracted intelligence from
publications to identify the core R & D topics. Then, patents and com-
mercial press information were adopted to evaluate core applications
and potential products/markets. With considerations to the features of
different technology development stages and characteristics of data
sources, the topics identified were more accurate and could reflect the
real research focus in different development stages.

A future priority could be to enrich our understanding of commer-
cial development strategies. We aspire to gain company engagement to
inform such downstream components of innovation pathways.
However, we recognize that constraints around such aspirations exist as
companies tend to protect proprietary and sensitive commercialization
plans.
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