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Abstract

Growth fluctuations exhibit substantial synchronization across countries, which has
been viewed as reflecting a global business cycle driven by shocks with worldwide
reach, or spillovers resulting from local real and/or financial linkages between
countries. This paper brings these two perspectives together by analyzing international
growth fluctuations in a setting that allows for both global shocks and spatial
dependence. Using annual data for 117 countries over 1970-2016, the paper finds that
the cross-country dependence of aggregate growth is the combined result of global
shocks summarized by a latent common factor and spatial effects accruing through the
growth of nearby countries – with proximity measured by bilateral trade linkages or
geographic distance. The latent global factor shows a strong positive correlation with
worldwide TFP growth. Countries’ exposure to global shocks is positively related to
their openness to trade and the degree of commodity specialization of their economies,
and negatively to their financial depth. Despite its simplicity, the empirical model fits
the data well. Ignoring the cross-country dependence of growth, by omitting spatial
effects or common shocks (or both) from the analysis, leads to a marked deterioration
of the empirical model’s in-sample explanatory power and out-of-sample forecasting
performance.

Keywords: World business cycle, common factors, spatial dependence
JEL classification: F44, C23, F62

                  



1 Introduction

The international synchronization of business cycles has long attracted academic and

policy interest. From the academic viewpoint, understanding the factors behind the

cross-country comovement of output can help shed light on the empirical validity of

different classes of theoretical models. From the policy perspective, quantifying the

degree of business cycle commonality is a primary consideration from the point of view

of optimal currency areas and, more broadly, to assess the merits of independent

stabilization policies.

An extensive empirical literature views the international comovement of growth as the

reflection of a global business cycle driven by shocks affecting a multitude of countries.

Following the contribution of Kose, Otrok and Whiteman (2003), a number of studies

model the cycle as the combined effect of a set of global and region (and, in some cases,

sector-specific) latent common factors; see e.g., Kose, Otrok and Prasad (2012), Crucini,

Kose, and Otrok (2011), Mumtaz, Simonelli and Surico (2011), and Karadimitropoulou

and Leon-Ledesma (2013). This literature finds that the international business cycle

can account for a major portion of cyclical GDP fluctuations – as much as 40 percent of

their variance in the case of G7 countries, according to the results of Kose, Otrok and

Whiteman (2003).

Another strand of empirical literature stresses growth interdependence arising from

economic linkages between countries or regions. This is the approach taken by the

extensive Global VAR (GVAR) literature pioneered by Pesaran, Schuermann and Weiner

(2004), and recently surveyed by Chudik and Pesaran (2016), which underscores the

real and financial dependence across countries that arises from their bilateral goods and

assets trade. The same basic mechanisms feature in several papers taking a spatial

perspective on growth empirics. Thus, Ho, Wang and Yu (2013) find evidence of growth

spillovers due to bilateral trade linkages between OECD countries. In the context of

a Solow model, they conclude that the estimated rate of convergence is significantly
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higher once those spatial links are taken into account. Likewise, Wang, Wong and

Granato (2015) find that the comovement of growth across countries is well explained

by the geographic distance between them.

These two empirical literatures share a common concern, namely the dependence of

economic growth across countries and regions. But methodologically they take very

different views. The first literature stresses shocks with global reach, affecting all

countries or regions under consideration. The second literature puts the emphasis on

the linkages generating dependence between particular countries or regions. The two

views roughly correspond to the distinction between strong and weak cross-sectional

dependence, respectively. Strong dependence arises from pervasive common shocks. In

turn, weak dependence between specific countries or regions primarily reflects their

economic and/or geographic proximity.1 Strong dependence is typically analyzed with

factor models (as done, for example, by Kose, Otrok and Whiteman (2003)), while

weak dependence is typically analyzed with spatial models highlighting geographic or

economic distance (as in, e.g., Ho, Wang and Yu (2013)).

So far, the empirical literature on growth interdependence and international

business cycles has taken into account one or the other form of dependence – but not

both. However, identifying correctly the type of cross-sectional dependence at work

can be quite important for estimation of and inference on empirical growth models.

While details may depend on the specific model under consideration, ignoring strong

dependence in the estimation when it is present will generally lead to inconsistent

estimates if the omitted common shocks are correlated with the model’s regressors

(Pesaran and Tosetti (2011)). Conversely, introducing common factors in the

estimation when only weak dependence is at play may similarly yield inconsistent

estimates (Onatski (2012)). In turn, the consequences of neglecting spatial dependence

when it is present hinge on its precise form. If spatial dependence accrues through the

1Strong and weak cross-sectional dependence can be formally defined in different ways. One commonly-used
definition bases the distinction between them on the rate at which the largest eigenvalue of the covariance matrix of
the cross-section units rises with the number of units; see Bailey, Kapetanios and Pesaran (2015).
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model’s error term, ignoring it will only cause loss of efficiency. However, ignoring

spatial dependence in the dependent variable and/or the independent variables may

yield biased and inconsistent estimates of the parameters of the remaining variables

(LeSage and Pace (2009)).

In reality, however, the two forms of dependence are likely to be simultaneously

present. Indeed, growth in a given country is likely to be affected by both global shocks

and shocks to economically nearby countries – with closeness defined by bilateral trade

intensity, financial linkages, and so on. The main contribution of this paper is to bring

both perspectives together. We analyze the international comovement of GDP growth

in a sample comprising over a hundred advanced and emerging countries, using an

encompassing empirical framework including both spatial effects and common factors.

This allows us to assess quantitatively the respective roles of strong and weak cross-

sectional dependence in the observed patterns of GDP growth across the world, and to

illustrate the consequences of ignoring either (or both) of them. To our knowledge, only

Bailey, Holly and Pesaran (2016), who examine the patterns of house prices across U.S.

metropolitan areas, and Vega and Elhorst (2016), who study regional unemployment

trends across the Netherlands, have employed a similarly encompassing approach.

We assume that spatial interactions between countries occur through growth itself.

This seems a natural way to model the linkages between national economies, and is the

same approach followed by Ho, Wang and Yu (2013), as well as the GVAR literature on

global business cycle dynamics. However, it also implies that the two-step estimation

methods employed by Bailey, Holly and Pesaran (2016), who assume that the interaction

occurs through the spatial error, are not applicable. Instead, we use the quasi-maximum

likelihood (QML) estimator recently introduced by Shi and Lee (2017), which permits

joint consideration of common factors and spatial dependence in a dynamic framework.

Because the factors and their loadings are treated as parameters, and their number

grows with sample size, they pose an incidental parameter problem that introduces

asymptotic bias in the QML estimator. The bias correction developed by Shi and Lee
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(2017) addresses this issue.

In light of the earlier literature, we experiment with two alternative specifications of

the spatial weight matrix that summarizes interactions between countries. We use both

a bilateral trade weight matrix, as done by Ho, Wang and Yu (2013), and a bilateral

geographical distance weight matrix, as done by Wang, Wong and Granato (2015).

Our country sample contains both advanced and developing economies. The former

are likely to be more deeply integrated than the latter in the international economy,

and thus more exposed to the international business cycle. Hence we also estimate the

empirical growth model on a subsample of 21 advanced countries. This allows us to

assess differences between these countries and the rest regarding the extent and nature

of cross-sectional dependence.

Estimation results using the two alternative specifications of the spatial weight

matrix show that growth exhibits significant inertia, somewhat higher in the advanced

country subsample than in the full sample. There is strong evidence of spatial effects,

summarized by a significantly positive contemporaneous spatial lag, and a negative

spatial-time lag, significant in the advanced-country sample. The implication is that

local interactions are important to understand the international comovement of

growth. However, the estimated spatial effects are substantially larger when modeling

spatial dependence in terms of bilateral trade. Importantly, growth around the world

also reflects a latent common factor, which we interpret as capturing the global

business cycle. The factor shows a robust positive correlation with a measure of

worldwide total factor productivity – as found by Crucini, Kose, and Otrok (2011) for

G-7 countries – and with global commodity prices.

The model does a good job at accounting for the pattern of growth across the world

and in particular its cross-country dependence. We find that the global cycle – as

summarized by the common factor – and spatial interactions account for a substantial

portion of the variance of GDP growth – around a quarter in the full sample, and over

half in the advanced-country subsample.
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Our results also speak to the determinants of countries’ exposure to global shocks, an

issue at the core of the policy debate. We find that the impact of the common factor on

GDP growth is significantly bigger in countries with more open trade accounts, and those

whose production structure is more tilted towards commodities. It is also significantly

weaker in countries featuring larger financial depth.

Finally, the paper underscores the importance of properly addressing cross-sectional

dependence, both strong and weak, in cross-country growth empirics. Ignoring it, by

omitting both common factors and spatial effects, leads to a gross overstatement of the

persistence of growth. It also weakens the estimated model’s in-sample fit, as well as

its out-of-sample forecasting ability. Including either the common factor or the spatial

effects helps mitigate these problems, but does not fully solve them. Including both

the factor and the spatial effects yields the best model performance, in terms of both

in-sample fit and out-of-sample forecasting.

The rest of the paper is organized as follows. Section 2 introduces the

factor-augmented dynamic spatial model of output growth employed in the paper.

Section 3 presents the data. Section 4 reports the results, and Section 5 provides some

conclusions.

2 Analytical framework

To study the international business cycle, we use a dynamic model that allows for both

pervasive cross-sectional dependence through common factors and localized dependence

through spatial linkages. We next describe the model and summarize our estimation

approach.

2.1 A factor-augmented dynamic spatial model of growth

Let git denote the real output growth in country i = 1, . . . , n at time t = 1, . . . , T , and

let gt = (g1t, ..., gnt)′. We assume that gt follows a spatial dynamic panel data model of
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the form:

gt = ρWgt + βgt−1 + λWgt−1 + Ψft + Vt. (1)

Thus, each country’s real output growth is related to current real output growth in

(economically) neighboring countries, Wgt, where W is an n× n spatial weight matrix;

lagged real output growth in the own country, gt−1, as well as in neighboring countries

Wgt−1; a set of r time-varying unobserved factors ft common to all countries; and a

stochastic disturbance Vt = (V1t, ..., Vnt)′. The parameters λ, β and ρ are all scalars,

while Ψ is an n× r matrix of factor loadings.

This general specification allows for both spatial dependence, unobserved common

factors and growth persistence. Spatial dependence, embedded in the spatially-lagged

dependent variable Wgt as well as its time-lagged value Wgt−1, reflects the effects of

current and lagged real output growth of nearby countries on the real output growth of

a particular country, see e.g Ho, Wang and Yu (2013) and Ertur and Koch (2007). The

extent of spatial dependence is measured by the contemporaneous spatial autoregressive

parameter ρ and the space-time lag coefficient λ.2. The relative contribution of each

country to the overall spatial effect is measured by the spatial weight matrix W, which

can be understood as providing a measure of economic proximity between countries.

In turn, the unobserved common factors ft capture systemic shocks that affect real

output growth across all countries. The n× r matrix of factor loadings Ψ measures the

(possibly heterogeneous) effect of the factors on each country’s growth. Finally, growth

persistence is captured by the parameter β on the lagged endogenous variable.

Equation (1) nests various models as special cases. For example, in the absence of

spatial dependence (ρ = 0 and λ = 0), equation (1) simplifies to a factor-augmented

2The parameter λ, termed ’diffusion parameter’ by Shi and Lee (2017), captures spatio-temporal correlations in
output growth that may result from partial adjustment (e.g., gradual responses to policy changes) or inter-temporal
decision making by economic agents, see e.g., Tao and Yu (2012). These authors also show analytically that in such
settings λ should typically be negative. Further, they also find that omitting a relevant spatial time lag can result
in significant biases in regression estimates.
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model relating real output growth to observable lagged growth plus latent common

factors, see e.g. Kose, Otrok and Whiteman (2003), Jorg and Sandra (2016) or Moench,

Ng and Potter (2013). Equation (1) can also be seen as a variant of the GVAR model

of Chudik and Pesaran (2016) imposing constant β, λ and ρ across countries.

In these specifications, the spatial dependence between countries is parameterized by

the n×n spatial weight matrix W. The matrix is assumed to be non-stochastic, with the

properties (i) Wij ≥ 0 for i 6= j, and (ii) Wij = 0 for i = j. The first property indicates

that the elements of W are non-negative known constants. The second property states

that countries are not neighbors to themselves. In empirical applications the weight

matrix W typically is row-normalized, such that ∑n
i 6=jWij = 1, see Anselin (1988).

Further, define S = (I − ρW ). Assuming that S is invertible, and letting A =

S−1(βI + λW ), equation (1) can be written as gt = Agt−1 + S−1(Ψft + Vt). Recurrent

substitution yields

gt =
∞∑

h=0
AhS−1(Ψft−h + Vt−h). (2)

With a row-normalized spatial weight matrix W , the sequence {Ah}∞h=0 is summable

in absolute value, and the initial condition g0 becomes asymptotically irrelevant when

T → ∞, provided the model’s parameters lie in the region Rs = {(ρ, β, λ) : β + (λ −

ρ)ωmin + 1 > 0, β + λ + ρ− 1 < 0, β + λ− ρ + 1 > 0, β + (ρ + λ)ωmin − 1 < 0}, where

ωmin is the smallest characteristic root of the weight matrix W, see Shi and Lee (2017).3

Equation (2) helps trace out the impulse responses to a unit shock in a given country

(i.e., a particular element of Vt) both over time and across countries, as will be discussed

in Section 4.

3The parameter estimates reported below satisfy these restrictions in all cases.
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2.2 Estimation approach

Estimation of the model (1) poses some special issues because of the simultaneous

presence of common factors and spatial effects. Both features are also present in the

empirical specification employed by Bailey, Holly and Pesaran (2016), who use a

two-stage approach to estimate their model: they estimate the common factors and

the model’s parameters at the first stage, and the spatial effects at the second stage,

with inference done ignoring the first-stage sampling errors. In their setting, however,

the spatial effects accrue through the error term, while in (1) they accrue through the

dependent variable. This makes the spatial effects endogenous, and implies that the

two-stage estimation approach is not applicable. The reason is that ignoring the

spatial effects in the first-stage estimation, as done by Bailey, Holly and Pesaran

(2016), would yield inconsistent estimates.

Dealing with the endogeneity requires instead an instrumental-variable approach,

such as the GMM-type estimator proposed by Kuersteiner and Prucha (2018), or

maximum likelihood methods, such as the quasi-maximum likelihood (QML)

estimators developed by Shi and Lee (2017) and Bai and Li (2018). However, in our

setting QML estimation faces an incidental parameters problem arising from the need

to estimate the unobserved common factors and their loadings, in addition to the more

standard problem posed by the presence of spatial effects and predetermined regressors

(the lagged dependent variable); see Bai and Li (2018) for details. As a result, the

QML estimator may show significant bias, for which a suitable correction is needed.

In this paper we employ the bias-corrected QML estimator recently developed by

Shi and Lee (2017), which deals with both sources of bias. In their study of regional

unemployment across the Netherlands featuring a setting similar to ours, Vega and

Elhorst (2016) also employ a QML estimator, but the bias correction they adopt

addresses only the second source of bias.4 We next provide a brief outline of our

4Rather than estimating the common factors, Vega and Elhorst (2016) use the national unemployment rate to
summarize them, assuming that the individual regions are too small to affect the country-wide unemployment rate
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estimation approach, and refer the reader to Shi and Lee (2017) for the full details.

In equation (1), let Zt = (gt−1, Wgt−1). Define the parameters of the model as

η = (δ′, ρ)′ with δ = (β, λ)′, the unobserved common factors FT = (f1, f2, ...fT )′ and

their loadings Ψ, and σ2, the variance of the iid disturbance Vit. Then the quasi-log

likelihood function of the model in equation (1) is

L(η, σ2, Ψ, FT ) = −1
2 log2π − 1

2 logσ
2 + 1

n
log|S| − 1

2σ2nT

T∑

t=1
(Sgt

−Ztδ −Ψf t)′ × (Sgt − Ztδ −Ψft). (3)

Dropping the constant term −1
2 log2π − 1

2 logσ
2, this expression can be rewritten as

L(η, Ψ, FT ) = 1
n
log|S| − 1

2 log
(

1
nT

T∑

t=1
(Sgt

−Ztδ −Ψf t)′ × (Sgt − Ztδ −Ψft)
)
. (4)

While here the number of common factors r is assumed to be known, for the

estimation it is determined using information criteria, as will be discussed below.

Due to the presence of the factors and their loadings, the number of parameters in

the model increases with the sample size. Focusing on η as the parameter of interest, and

concentrating out the factors and their loadings applying principal component analysis,

the concentrated log-likelihood is

L(η) = max
FT∈RT ×r,Ψ∈Rn×r

L′(η,Ψ, FT )

= 1
n
log|S| − 1

2 log G(η), (5)

where G(η) = 1
nT

∑n
i=r+1 µi(Sg −

∑K
k=1 Zkδk)(Sg −

∑K
k=1 Zkδk)′, µi is the ith largest

eigenvalue of the symmetric matrix (Sg − ∑K
k=1 Zkδk)(Sg −

∑K
k=1 Zkδk)′,

g = (g1, g2, ..., gT ), K is the number of columns of Zt (two in our setting), Zk is an

– which can then be taken as exogenous. However, such an assumption is unlikely to hold in our setting, as our
country sample includes some very large economies.
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n × T matrix whose t-th column is just the k-th column of Zt, and δk is the k-th

element of δ. The QML estimator is derived from the optimization problem in

equation (5). The estimate of the factor loadings Ψ is computed from the eigenvectors

associated with the r largest eigenvalues of (Sg − ∑K
k=1 Zkδk)(Sg −

∑K
k=1 Zkδk)′. The

estimate of FT is obtained analogously by switching T and n.

The QML estimator of the regression coefficients is consistent and asymptotically

normal. However, it is asymptotically biased owing to the incidental parameters problem

already mentioned. To tackle this issue, Shi and Lee (2017) develop a bias correction that

yields an asymptotically normal, properly-centered estimator. The estimation results

reported below employ the bias-corrected estimator.

3 Data

We use a large cross-country growth data set drawn from the United Nations National

Accounts database.5 To circumvent potential outliers and data errors, we exclude (i) very

small economies with total population less than 500,000, owing to their often extreme

volatility; (ii) countries featuring any observations with annual real GDP growth in

excess of 40%; and (iii) countries with standard deviation of real GDP growth exceeding

10%. This yields a balanced panel of 117 countries over the period 1970-2016. The

sample countries account for more than 90% of world GDP in 2016. Because advanced

countries feature higher trade and financial integration than other countries (see Kose,

Terrones and Prasad (2004)), which likely affects their growth comovement, we consider

separately a sub-sample of 21 advanced economies. The full list of countries is given in

Table A1 in the appendix.

Real GDP is measured in constant U.S. dollars (expressed in international prices,

base 2010), and annual real output growth is computed as the first difference of the log

of real GDP.
5We employ GDP growth data from the United Nations National Accounts database because it reaches up to

2016. In contrast, PWT 9.0 data only reaches up to 2014. Over the common time sample, the correlation between
the GDP growth rates derived from both sources exceeds 0.99.
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The spatial weight matrix that connects cross-sectional units (countries) is an

important element in the empirical implementation of the model. We measure the

economic distance between each pair of countries by the magnitude of their bilateral

trade, following the view that bilateral trade intensities capture economic interactions

and shock spillovers across countries, so that countries that trade more are

economically more connected, see e.g. Frankel and Rose (1998).

To construct the bilateral trade weight matrix, we use information on bilateral trade

taken from the IMF Direction of Trade Statistics (DOT). Specifically, for a pair of

countries i 6= j, entry i,j of the trade spatial weight matrix W is defined as

Wij = Exportsij + Importsji∑K=N
K=1 Exportsik +∑K=N

K=1 Importski
,

where Exportsij denotes the exports from country i to country j, and Importsji are

the imports of country i from country j. Once W has been computed, it is rescaled

dividing each of its elements by the sum of its corresponding row, so that the rows of

the rescaled matrix sum to unity.6

Alternatively, following Ertur and Koch (2007), we use a weight matrix WD based on

inverse squared distance. The elements of WD are defined (before row normalization)

as

WDij =





0 if i = j

dij
−2 otherwise,

where dij is the great-circle distance between the capital cities of countries i and j.7

To assess the covariates of the common factors, we consider four candidate variables,
6Such row standardization of the weight matrix facilitates the interpretation of the model coefficients, see Anselin

(1988).
7Here we follow the trade literature, in which distance between countries is typically measured by the distance

between their respective capital cities; see e.g., Anderson and Wincoop (2004). The great-circle distance, the shortest
distance between any two country capitals, is computed as: dij = radius× cos−1[cos |longi − longj | coslaticostlatj +
sinlatisinlatj ] where radius is the Earth's radius, and lat and long are, respectively, latitude and longitude for
country capitals i and j. The latitude and longitude coordinates for each of the country capitals in our sample were
collected from the CEPII database.
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namely, (i) total factor productivity; (ii) policy uncertainty; (iii) the U.S. short-term real

interest rate; and (iv) global commodity prices. Crucini, Kose, and Otrok (2011) find

that total factor productivity is the leading driver of the business cycle of G-7 countries.

They also find a relatively minor contribution of monetary policy. In turn, Baker and

Bloom (2013) show that policy uncertainty plays an important role in driving business

cycles. Barrot, Calderón and Servén (2018) find that commodity price shocks account

for a major portion of the growth fluctuations of developing countries.

Total factor productivity (TFP) is computed from the standard Solow residual

using capital and labor inputs, and is drawn from the Penn World Tables version 9.0.

Policy uncertainty is measured using the U.S. policy uncertainty index of Baker,

Bloom and Davis (2016). The U.S. real interest rate is taken from the Fred dataset.

World commodity prices are measured by the World Bank’s price index of nonfood

commodities in real terms.

To assess the determinants of exposure to global shocks, we regress factor loadings on

a set of variables capturing countries’ policy and structural features, namely: (i) trade

openness, measured as total exports plus imports as a percentage of GDP; (ii) financial

openness, measured by the Chinn-Ito index of capital account openness; (iii) financial

depth, measured by domestic credit to the private sector as a percentage of GDP; (iv)

the extent of commodity specialization, measured by net real exports of commodities

over GDP as in Leamer (1984, 1995); (vi) the size of the public sector, measured by

government consumption as a percentage of GDP; and (vii) the size of the economy, as

captured by total population.

Figure 1 depicts the time path of average real GDP growth for both the full and

advanced country samples. The trends are similar in both cases, although growth is

consistently higher in the former (3.6% on average over the entire sample period) than

in the latter (2.3%). The figure also shows major recessions at the time of the oil shock

of the mid 1970s as well as in 2008/09 following the global financial crisis. Average

growth falls more sharply in the latter episode, and the fall is more severe for advanced
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Figure 1: Average real output growth

countries (see also Kose, Otrok and Prasad (2012)).

As Figure 1 also shows, growth displays significant persistence, somewhat larger

among advanced economies than among the rest. The mean of country-specific first-

order autocorrelation coefficients of growth equals 0.30 in the full sample, and 0.34 in

the advanced-country sample.

4 Empirical results

As a first step, we compute the pairwise correlation of real output growth across

countries, and visualize it using network maps.8 Figure 2 shows the network map of

pairwise growth correlations for the full sample. The average and median correlation

are, respectively, 0.126 and 0.088. To avoid cluttering the figure, we only depict those

correlations above a threshold value of 0.4. In the network map, the correlation

between two countries is indicated by the connecting line, and the position of the

countries is determined by the magnitude of the pairwise correlations, such that

countries that exhibit stronger correlations are located near each other. As shown,

most of the advanced economies locate near each other. There is a cluster of countries

featuring high pairwise correlations that comprises Austria, Belgium, Canada, France,

8Some studies, such as Ductor and Leiva-Leon (2016), use pairwise growth correlations to study business cycle
interdependence.
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Germany, Italy, Spain, Netherlands, USA and Colombia, among others. At the other

extreme, several African countries (Togo, Comoros, Burundi, Senegal, Mauritania)

exhibit relatively low connection to the system.

Figure 2: Real GDP growth correlation, all countries

Notes: The pairwise correlation between two countries is indicated by their
connecting line. Pairwise correlations less than 0.4 are dropped. If two countries
are not connected in the graph, their pairwise correlation is less than 0.4. The list
of countries and the corresponding codes are given in the appendix in Table A1.

Similarly, Figure 3 displays the network map of pairwise growth correlations for the

advanced countries. The average and median correlation are, respectively, 0.478 and

0.470. Because pairwise correlations are generally higher among advanced countries than

in the full sample, we use a higher threshold value of 0.6 in Figure 3. By this measure,

each of the advanced countries is connected with at least one other country, except for

Greece, Ireland, Norway, New Zealand, and Switzerland. European Union countries

such as Belgium, Germany, France, the Netherlands, Portugal and Spain appear to be

connected with a larger number of countries than the rest.

While the pairwise correlations summarized in Figures 2 and 3 provide a first hint of
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the extent of cross-sectional dependence of real output growth, a more formal assessment

can be made using two suitable statistics. The first one is the cross-sectional dependence

(CD) test statistic of Pesaran (2015), which is based on a simple average of pairwise

correlation coefficients. The statistic is given by
√

nT
n(n−1)

(∑n−1
i=1

∑n
j=i+1 r̂ij

)
, where the

r̂ij are the estimated pairwise correlation coefficients. Under the null hypothesis of

weak cross-sectional dependence – that is, if cross-sectional dependence is either absent

altogether or limited to a sufficiently small number of cross-sectional units – Pesaran

(2015) shows that CD d−→N(0, 1) as n, T →∞.

Figure 3: Real GDP growth correlation, advanced countries

Notes: The pairwise correlation between two countries is indicated by their
connecting line. Pairwise correlations less than 0.6 are dropped. If two countries
are not connected in the graph, their pairwise correlation is less than 0.6. The list
of countries and the corresponding codes are given in the appendix in Table A1.

Rejection of the null of the CD test suggests the presence of strong (or pervasive)

cross-sectional dependence, which can be further investigated with the help of the second

statistic – the exponent of cross-sectional dependence of Bailey, Kapetanios and Pesaran

(2015). It is defined by the standard deviation of the cross-sectional average of the
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observations. Specifically, the exponent α is given by Std.(x̃t) = O(nα−1), where x̃t =

n−1∑n
i=1 xit is a simple cross-sectional average of the observations pertaining to period

t = 1, ..., T . The exponent α takes a value between 0 and 1. While no formal test is

available, an estimate of α close or equal to 1 is taken to indicate strong cross-sectional

dependence, of the type usually captured with (strong) factor models.9

Table 1 reports the Pesaran CD test statistic and the exponent of cross-sectional

dependence of real GDP growth, for the full sample (left column) and the advanced-

country sample (right column). The CD test statistic is above 40 for both samples,

overwhelmingly rejecting the null. Table 1 also reports the exponent of cross-sectional

dependence along with its approximate standard error, for both the advanced and full

country samples. The estimated value is 1 in the advanced-country sample, and .96

in the full sample. Thus, in both cases the estimates point to the presence of strong

common factors in the output growth data, consistent with the findings of, e.g., Kose,

Otrok and Whiteman (2003).

Table 1: GDP growth: cross-sectional dependence

All countries Advanced countries
Pesaran CD statistic 42.223 43.134
(p-value) (0.000) (0.000)

Exponent of CSD 0.960 1.003
(standard error) (0.029) (0.058)

Number of countries 117 21
Notes: GDP growth is the first difference of the log of real GDP. ’Pesaran CD
statistic’ is the cross-sectional dependence statistic of Pesaran (2015). ’Exponent
of CSD’ is the exponent of cross-sectional dependence of Bailey, Kapetanios and
Pesaran (2015). The sample period is 1970-2016.

9In a general factor model setting the exponent of cross-sectional dependence can be interpreted as the rate at
which the factor loadings (fail to) die off as cross-sectional sample size increases, see Bailey, Kapetanios and Pesaran
(2015).
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4.1 Model estimation results

In order to estimate the factor-augmented dynamic spatial model (1), we first need

to determine the number of unobserved common factors. To do so, we compute the

IC, BIC and HQ information criteria proposed by Choi and Jeong (2018) setting the

maximum number of factors to 5.10 The results are shown in Table 2. The upper panel

of the table reports results for the full sample, and the bottom panel reports results for

the advanced-country sample. For the full sample, both the IC and HQ criteria suggest

one factor while the BIC criterion suggests zero factors. For the advanced country

sample, the BIC and HQ criteria suggest one factor while the IC criterion suggests

two factors (by a narrow margin). We opt for employing one factor in all the estimations

below.11

Table 2: Model selection criteria

Criteria Number of factors
All countries

0 1 2 3 4
IC2 0.000 -0.053 -0.046 -0.016 0.015
BIC 1.005 1.494 2.311 3.246 4.188
HQ 0.809 -0.319 -0.280 -0.204 -0.116

Advanced countries
IC2 0.000 -0.470 -0.487 -0.464 -0.292
BIC 0.144 -0.053 0.187 0.466 0.756
HQ 0.503 0.293 0.410 0.647 0.889

We turn to the main estimation results. Table 3 reports model estimates for the

full sample (left panel) and the advanced country-sample (right panel). In each case,

the two columns in the table correspond to the two alternative spatial weight matrix

specifications – bilateral trade and bilateral inverse distance.

Consider first the full-sample results on the first two columns of the table. The

10Setting the maximum number of factors to 3 gives very similar results.
11Ductor and Leiva-Leon (2016) also employ a single factor to capture the common component of GDP growth

across countries.
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coefficient estimate of lagged output growth is positive and statistically significant in

both specifications, indicating a significant degree of inertia of output growth.

Table 3: Estimation results

All countries Advanced countries
Weight matrix Trade Distance Trade Distance

gt−1 0.326 0.324 0.407 0.380
(24.833) (24.658) (13.435) (12.367)

Wgt 0.344 0.110 0.742 0.192
(11.777) (5.139) (33.994) (3.884)

Wgt−1 -0.073 0.024 -0.201 -0.233
(-1.529) (0.876) (-5.090) (-2.892)

Pesaran CD statistic -0.172 -0.325 1.997 -1.194
(p-value) (0.432) (0.373) (0.023) (0.116)

Exponent of CSD 0.423 0.415 0.675 0.423
R2 0.229 0.228 0.598 0.519
R̄2 0.205 0.202 0.565 0.484
Notes: GDP growth is the first difference of the log of real GDP. ’Pesaran CD statistic’ is the
cross-sectional dependence statistic of Pesaran (2015). ’Exponent of CSD’ is the exponent of
cross-sectional dependence of Bailey, Kapetanios and Pesaran (2015). T-statistics in brackets.
The sample period covers 1970-2016.

Turning to the spatial effects, the coefficient estimate of the contemporaneous spatial

lag is positive and statistically significant. Its magnitude is much bigger under the trade

weight matrix than under the distance matrix. The positive contemporaneous spatial

lag indicates that higher output growth in a given country tends to raise growth of

nearby countries in terms of both bilateral trade and geographical distance. This result,

consistent with Ertur and Koch (2007) and Ertur and Koch (2011), implies that spatial

spillover effects are important to understand growth, and countries cannot be treated

as spatially independent. In turn, the space-time lag is insignificant under both weight

matrices.

The factor-augmented dynamic model does a good job at capturing the

cross-sectional dependence shown in Table 1. The CD test statistic given in the

bottom panel of Table 3 finds little evidence of residual cross-sectional dependence.
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Likewise, the exponent of cross-sectional dependence also indicates no strong

cross-sectional dependence in the residuals.

The estimates from the advanced-country sample, shown in the third and fourth

columns of Table 3, tend to follow the same sign and significance patterns of the full-

country estimates. There are some differences, however. The estimated spatial effects

are consistently larger, in absolute value, than in the full sample, likely reflecting the

deeper economic linkages among advanced countries relative to the rest. Like in the full

sample, the contemporaneous spatial lag is of much larger magnitude under the trade

weight matrix than under the distance weight matrix. Still, under both specifications

the CD statistic hints at residual cross-sectional dependence, more so when using the

trade weight matrix. This might just reflect the known tendency of the CD test to

over-reject when the cross-sectional dimension of the sample falls well short of its time

dimension, see Pesaran (2015). However, another possible reason is that restricting the

sample to just advanced countries may conceal significant indirect links between them

arising from economic interaction with emerging and developing countries, which are

not captured by the advanced-country spatial weight matrices. 12

The bottom panel of Table 3 also reports the R2 and its adjusted counterpart.13 The

model accounts for more than 20 percent of the variation of the dependent variable in

the full sample, and over 50 percent in the advanced-country sample. In the full sample,

the goodness of fit is similar under both specifications of the spatial weight matrix, while

the trade matrix specification provides the better fit in the advanced country sample.

By this measure, the model’s explanatory power compares favorably with that of the

multilevel factor model of Kose, Otrok and Whiteman (2003), which accounts for some

17 and 42 percent of the variance of growth of the median country in its world and G7

12This might happen if, for example, two advanced countries have the same trade partner(s) among emerging
countries, but do not conduct any trade between themselves. A growth shock to the common emerging-market
trade partner(s) will impact both advanced countries, in spite of the absence of a direct trade linkage. Empirically,
non-advanced countries account for as much as half of the total merchandise trade of some of the major advanced
economies, such as the U.S.

13R2 is measured by the square of the correlation between the actual and predicted values of the dependent
variable; see Elhorst (2014).
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samples, respectively. 14

Finally, the estimated models are able to account for the observed growth inertia.

In the full sample, the country-specific first-order autocorrelation coefficients of the

residuals average just -0.01 when the estimation is done using the trade weight matrix,

and -0.03 when using the distance weight matrix. For the advanced-country sample, the

average equals -0.05 in both cases. More formally, a panel test of the null hypothesis

that the first-order autocorrelation of the residuals equals zero (Baltagi and Li (1995))

fails to reject the null in all cases. Under the null, the test statistic is distributed as

a chi-square with one degree of freedom. In the full sample, its computed value was

1.65 (p-value 0.20) when using the trade weight matrix, and 1.71 (p-value 0.19) when

using the distance weight matrix, while in the advanced-country sample the computed

values were 0.22 (p-value 0.64) and 1.34 (p-value 0.25), respectively. This suggests that

residual autocorrelation is not a concern.

For the specifications estimated in Table 3, Tables A3 and A4 in the appendix further

report the correlation between the actual and fitted values by country for the full and

advanced-country samples, respectively. The median value of the correlation is around

.46 for the full sample and .75 for the advanced-country sample under both the bilateral

trade and inverse distance weight matrices. However, there is considerable heterogeneity

across countries, especially in the full sample. Guatemala, Romania, Spain and Congo

exhibit correlations above 0.75 under both weight matrices, while a handful of emerging

and developing countries, mostly in Sub-Saharan Africa (Benin, Fiji, Guinea Bissau,

Madagascar, Morocco, Nepal and Senegal) show negative correlations. In the advanced

country sample, 12 out of the 21 countries exhibit correlations above .7 under both the

bilateral trade and the distance weight matrices. In contrast, Australia and New Zealand

exhibit much lower correlations (around 0.3), indicating their (economic) remoteness

within the system.

14These figures are based on their Table 4, and comprise the contribution of both the global and the regional
factors in their model. Kose, Otrok and Prasad (2012) report very similar figures in their Table 1.
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4.2 Transmission of spatial impacts

The fundamental implication of the dynamic spatial model is that a shock in a particular

country affects growth not only in that country, but also in neighboring countries within

the spatial system. Incorporating the spatial interaction effects helps better understand

the nature and magnitude of spillover effects across countries. To illustrate the spatial

spillovers implied by the estimates of the model, consider equation (1) rewritten as:

gt = (I − ρW )−1(βI + λW )gt−1 + (I − ρW )−1(Ψft + Vt). (6)

Recursive substitution shows that the effect h-periods ahead of a one-time shock to Vt is
∂gt+h

∂Vt
= [(I−ρW )−1(βI+λW )]h(I−ρW )−1. The short-run effect is just ∂gt

∂Vt
= (I−ρW )−1.

Hence the impact of a shock hitting a particular country (i.e., a shock to a particular

element of Vt) diminishes with distance at a rate that depends on the elements of the

weight matrix W and the spatial coefficient ρ. It also declines over time at a rate that

depends on λ, β and ρ. The larger (in absolute value) these parameters, the larger the

eigenvalues of the transition matrix [(I − ρW )−1(βI + λW )], and the more persistent

the effects of the shock.

For illustration, Figure 4 reports the impact on selected countries of one-time shocks

to real output growth in the U.S., the U.K., Germany, Turkey, Mexico and Brazil. The

graphs show the response obtained with the full-sample estimates using the trade weight

matrix. In each case, the graphs show the contemporaneous response to a unit shock to

output growth, and the dynamics over the subsequent three years.15

The short-run effects are, in some cases, fairly substantial. For example, a

1-percentage point shock to U.S. growth raises growth in Mexico by more than 0.9

percent. It also has a sizable impact on Brazil. In turn, a 1-percent shock to Brazil

raises growth in Argentina by 0.3 percent, while a shock to Germany raises growth in

Turkey by close to a quarter point.16

15The standard deviation of the growth residuals is .04.
16Under the distance specification of the weight matrix, impacts (not reported) are much smaller.
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Convergence is monotonic and fairly rapid – after just three years, the impacts have

declined to almost zero. The reason is that the eigenvalues of the transition matrix

turn out to be fairly small in absolute value (under 0.4), thus implying only moderate

persistence.

Figure 4: Dynamic spatial impacts

To further illustrate the propagation of output shocks, we compute the

contemporaneous responses to a one-time shock to U.S. and German output growth

using the full-sample estimates under the trade specification of the weight matrix. The

results are summarized in Figure 5. In the figure, the direction of the arrows indicates

the transmission of shocks from the source country to the (economically) neighboring
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Figure 5: The short-run spatial transmission of shocks

(a) US

(b) Germany

Notes: The graph shows the short-run transmission of a one-time shock from the U.S.
and Germany to other countries. The thickness of the arrows in the graph indicates
the magnitude of the impact, i.e the thicker the arrow, the bigger the impact.
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countries, while the thickness of the line indicates the magnitude of the shock

spillovers. The closer a country is to the source country (in terms of the trade weight

matrix), the bigger is the spillover. Canada and Mexico appear to be the most affected

by a U.S. output growth shock. Shocks to Germany’s growth have their largest impact

on Austria, Hungary and Poland.

4.3 The common factor and the global business cycle

A crucial element of the empirical model is the unobserved common factor driving output

growth around the world. Figure 6 depicts the common factors obtained from the model

estimation under each of the weight matrices, for both the full and the advanced-country

samples, along with the respective average growth rate of GDP. In the full sample, the

common factor tracks average GDP growth very closely: the correlation of the factor

with world GDP growth is .85 and .88 under the trade and distance weight matrices,

respectively. The same happens in the advanced-country subsample under the distance

matrix: the correlation of the common factor with average growth is .97. Under the

trade matrix, however, the correlation is just .14, and instead the common factor shows

fairly high correlation (.63) with the cross-sectional variance of growth. The conclusion

is that trade linkages, by themselves, go a long way towards accounting for the cyclical

comovement of advanced economies.17

Consistent with the findings of Kose, Otrok and Whiteman (2003), the swings in the

estimated factors tend to reflect major economic episodes of the last four and a half

decades – the recessions of the mid 1970s and early 1980s, the downturn of the early

1990s, and the financial crisis of 2008/09. For the full sample, the estimated common

factors are very similar across the bilateral trade and distance matrix specifications in

Table 3 – their correlation exceeds .89. For the advanced countries, the correlation is

just .28.

17To verify this claim, we re-estimated the model on the advanced-country subsample omitting the spatial effects.
The correlation of the resulting common factor with average growth is .97. This indicates that the trade-based spatial
effects largely substitute for the common factor in the task of fitting average growth fluctuations.
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Figure 6: Output growth and common factor

(a) All countries

(b) Advanced countries

Kose, Otrok and Whiteman (2003) and Crucini, Kose, and Otrok (2011) also find a

common factor behind worldwide and G-7 GDP growth, respectively. The latter paper

also examines the drivers of the G-7 common factor, and concludes that productivity

growth plays the leading role, in accordance with standard real business cycle models.

In contrast, measures of monetary and fiscal policy, commodity prices, and the terms

of trade are much less important. On the other hand, more recent work by Baker and

Bloom (2013) and Baker, Bloom and Davis (2016) shows that policy uncertainty also

plays a significant role in driving business cycles among advanced countries, with

increased uncertainty resulting in declines in aggregate output, investment, and
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employment. In turn, Barrot, Calderón and Servén (2018) find that commodity price

shocks accounts for a significant portion of the GDP fluctuations of emerging and

developing countries.

Table 4: Factor covariates, trade and distance weight matrices

Variable Trade weight matrix
I II III IV V

∆ TFP 4.531 3.958
(6.704) (4.282)

Uncertainty -0.296 -0.126
(-1.494) (-1.380)

Real interest rate -1.020 0.133
(-3.009) (-0.376)

Commodity price 0.193 0.221
(2.611) (4.177)

No. of obs. 43 32 45 45 30
R2 0.517 0.086 0.110 0.097 0.710

Distance weight matrix
∆ TFP 5.643 4.998

(5.539) (2.990)
Uncertainty -0.470 -0.176

(-2.173) (-1.280)
Real interest rate -0.500 0.855

(-1.061) (1.475)
Commodity price 0.193 0.250

(2.064) (3.171)
No. of obs. 43 32 45 45 30
R2 0.549 0.126 0.018 0.067 0.589
Notes: The dependent variable is the common factor from the full sample
estimates in Table 3. ∆ TFP is the first difference of log total factor
productivity (TFP), Uncertainty is the log of the U.S. economic policy
uncertainty index taken from Baker, Bloom and Davis (2016), Real interest
rate is the U.S. real short-term interest rate, Commodity price is the log
of commodity (non-food) price. T-statistics in brackets computed with
heteroskedasticity and autocorrelation consistent (HAC) standard errors. The
regressions include a constant.

To assess the covariates of the global business cycle in our much broader country

sample, Table 4 presents regressions of the estimated common factor from the full

country sample on total factor productivity, policy uncertainty, the U.S. short-term
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real interest rate, taken as a measure of global monetary conditions, and global

non-food commodity prices. The upper panel reports the results obtained using as

dependent variable the common factor derived from the model using the trade weight

matrix, and the bottom panel reports the results obtained with the factor estimated

when using the bilateral distance weight matrix.

The univariate regression results show that total factor productivity is positively

correlated with the common factor, corroborating the findings of Crucini, Kose, and

Otrok (2011) using data for G-7 countries. Moreover, the role of TFP growth is

quantitatively large: it accounts for over half of the total variation of the common

factor. Next, the uncertainty index, which is available only for a shorter time span,

shows a negative sign, although it reaches statistical significance only under the trade

weight matrix. In turn, the U.S. short-term real interest rate is negative correlated

with the global factor under both configurations of the weight matrix, likely reflecting

the action of supply-side monetary shocks (demand-side shocks should result in a

positive sign). However, the regression coefficient is statistically significant under the

trade matrix only. Lastly, global commodity prices show a significant positive

correlation with the common factor. Finally, the last column of the table shows that

when all four variables are considered jointly, they can account for 60-70 percent of the

variation in the common factor – although the sample over which all regressors are

available is admittedly short. However, only TFP growth and commodity prices

remain statistically significant.

4.4 The exposure to the global business cycle

As already noted, the common factor driving output growth across the world can be

interpreted as a summary representation of the global business cycle. A natural question

is what determines countries’ exposure to the cycle – or, in other words, the sensitivity

of their output growth to global shocks.

In our model, the factor loadings measure the response of each country’s output

27

                  



growth to the common shocks. For the full sample, the estimated loadings (shown in

Figure 7(a)) are very similar across the two specifications of the weight matrix: their

pairwise correlations exceed .96. The loadings are generally positive, with a few

exceptions under the trade weight matrix, indicating that the global cycle affects the

growth rate of almost all countries in the same direction. In the advanced-country

sample, the correlation between the loadings obtained under the two alternative

specifications of the weight matrix (shown in Figure 7(b)) is somewhat lower, but it

still exceeds .85.

However, the magnitude of the loadings displays considerable variation across

countries. In the full sample, the largest loadings belong to Botswana, Portugal and

China when using the trade-based matrix, and Botswana, China and Singapore when

using the distance weight matrix. In the advanced-country sample, the largest loadings

correspond by far to Ireland, followed by Sweden and Spain under the trade-based

weight matrix, and Portugal and Finland under the distance weight matrix.18

It seems plausible to expect the loadings to vary systematically with key features of

countries’ structural and policy framework – such as their degree of financial development

and/or international integration.

To verify this conjecture, we regress the full-sample factor loadings on selected policy

and structural indicators. Specifically, the variables we consider are trade openness,

capital account openness, financial depth, commodity specialization, the relative size of

the public sector, and country size.

18Figure 7(b) shows that Ireland’s loading is particularly large under the trade weight matrix. As already
mentioned, under such configuration the estimated common factor is closely correlated with the cross-sectional
variance of advanced-country growth. The variance peaks in 2015, as does the common factor shown in Figure 6(b)
above. In that year, Ireland’s real GDP growth rate topped 22 percent. The extreme value of Ireland’s factor loading
is largely a result of such extreme observation in the context of a sample of small cross-sectional dimension. Indeed,
if the model is re-estimated using only the observations up to 2014, Ireland’s loading under the trade weight matrix
declines by half, and the correlation of the factor loadings with those obtained under the distance weight matrix
rises to 0.99. The same happens with the correlation of the common factor obtained from such reduced time sample
under the trade weight matrix with its counterpart under the distance weight matrix – it rises to 0.98.
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Figure 7: Factor loadings

(a) All countries

(b) Advanced countries

On theoretical grounds, trade openness should raise business cycle interdependence

by facilitating the transmission of shocks across countries, see Kose and Yi (2006),

Ductor and Leiva-Leon (2016) and Barrot, Calderón and Servén (2018). In turn,

financial openness plays in principle a more ambiguous role, as it might allow better

diversification of real shocks but at the same time expose the economy to external
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financial disturbances. The same applies to domestic financial depth – it should help

mitigate growth shocks, but it might also amplify large ones through the occurrence of

financial crises. Next, a higher degree of commodity specialization should raise the

economy’s exposure to the global cycle, to the extent that the latter is partly driven by

commodity price shocks. Indeed, Barrot, Calderón and Servén (2018) find that

commodity-intensive developing economies are more vulnerable than the rest to both

real and financial external shocks.

We also include public sector size, as measured by government consumption relative

to GDP. The theoretical expectation is that a bigger public sector should help mitigate

the impact of global disturbances. Finally, we also include average population as a

proxy measure of country size. In their study of the cross-country comovement of

aggregate consumption, Hevia and Servén (2018) find that larger economies reflect

global consumption fluctuations more closely than smaller economies, because their

income shocks make a larger contribution to global fluctuations than do shocks to the

income of smaller economies – i.e., they are, to a larger extent, common shocks.

As the factor loadings do not change over time, the regressions only make use of the

cross-sectional variation, and therefore the explanatory variables are measured by their

respective average over the entire 46-year time sample. Over this time span, they have

surely undergone major changes, which should tend to obscure their relationship with

the loadings.

Table 5 reports the results from regressing the factor loadings on the explanatory

variables. The upper panel reports results using the loadings obtained with the trade

weight matrix, and the bottom panel reports the results obtained using the loadings

obtained with the distance weight matrix. The univariate regressions show that exposure

to the global business cycle significantly increases with countries’ trade openness and

commodity specialization, consistent with the results of Barrot, Calderón and Servén

(2018), as well as country size, as found by Hevia and Servén (2018). This holds true

as well in the regressions using all the variables jointly (shown in the final column of
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Table 5: Loading covariates regression, all countries

Variable Trade weight matrix
I II III IV V VI VII

Trade openness 0.019 0.021
(2.146) (1.847)

Financial openness -0.014 -0.009
(-0.876) (-0.552)

Financial depth -0.0002 -0.0003
(-2.262) (-2.496)

Commodity specialization 0.0002 0.0002
(2.693) (2.252)

Public sector size -0.0003 0.0008
(-0.298) (0.698)

Population 0.000 0.000
(2.590) (4.626)

R2 0.051 0.008 0.041 0.107 0.0008 0.038 0.258
Distance weight matrix

Trade openness 0.017 0.015
(2.161) (1.613)

Financial openness -0.003 0.0009
(-0.238) (0.065)

Financial depth -0.0001 -0.0002
(-1.461) (-1.991)

Commodity specialization 0.0002 0.0001
(2.704) (2.263)

Public sector size -0.0005 0.0003
(-0.669) (0.337)

Population 0.000 0.000
(3.279) (5.107)

R2 0.054 0.0006 0.018 0.115 0.004 0.046 0.247
Notes: The table shows regression of the factor loadings from the full sample estimates in Table 3 on the
variables shown. Population is the average population (in millions) during 1970-2016. T-statistics in brackets
computed with heteroscedasticity-consistent standard errors. The regressions include a constant.
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the table), which also reveal that financial depth is negatively correlated with the factor

loadings. In turn, financial openness and the size of the public sector are insignificant

in both the univariate and the multivariate regressions.

4.5 Sensitivity analysis

Finally, we examine the sensitivity of our main results to alternative ways of modeling

the cross-country dependence of output growth. Our methodological setting employs

both common factors and spatial effects, in contrast with the earlier literature that

opts for one or the other. We next assess how this choice affects our results. For this

purpose, we re-estimate the model omitting the common factor and the spatial effects

– first jointly and then in turn.19

The results are shown in Table 6. In the first column, cross-sectional dependence is

ignored altogether, and common factors and spatial effects are both omitted – i.e., in

terms of equation (1), we impose ρ = λ = 0 and Ψ = 0. In the second column, the

model includes a common factor but no spatial effects (i.e., ρ = λ = 0). The last two

columns rule out common factors (i.e., Ψ = 0) but allow for spatial effects described by

the two alternative specifications of the spatial weight matrix. The top panel of Table

6 reports the results obtained with the full sample, and the bottom panel reports those

obtained with the advanced-country sample.

The first column of Table 6 shows that ignoring cross-sectional dependence leads to

distorted parameter estimates and to a marked deterioration of the model’s empirical

performance relative to that achieved when both spatial effects and common factors

are allowed for (shown in Table 3). The parameter estimate on the lagged dependent

variable almost doubles relative to that in Table 3. Moreover, in both samples the

CD statistic and the exponent of cross-sectional dependence suggest (strong) residual

dependence. In addition, the overall fit of the model, as measured by the R2, is quite

19Ertur and Musolesi (2017) also compare the estimates obtained from a factor model with those obtained from
a spatial model.
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poor.

The second column of Table 6 adds a common factor but omits spatial effects. The

parameter estimates of the lagged dependent variable are now much closer to those in

Table 3. In the full sample, both the CD statistic and the exponent of cross-sectional

dependence fall sharply indicating no cross-sectional dependence in the residuals. In the

advanced country sample, on the other hand, both the CD statistic and the exponent

of cross-sectional dependence also fall sharply relative to those in the first column, but

they continue to hint at dependence among the residuals. Finally, the fit of the model

shows a considerable improvement relative to the preceding column.

The last two columns of Table 6 report estimates including spatial effects, for each

of the two versions of the spatial weight matrix we consider, but excluding the common

factor. In all cases, the estimates of the parameter on the lagged dependent variable

exceed the values shown in Table 3, likely overstating the persistence of growth. In

turn, the spatial effects are strongly significant, except for the space-time lag under

the trade matrix in the full sample. The cross-sectional dependence statistics show in

general lower values than in the first column of Table 6, but the CD statistic still shows

in all cases significant evidence against the null of weak dependence, suggesting that

the spatial effects alone do not do enough to ameliorate the dependence in the data.

Both the exponent of cross-sectional dependence and the CD statistic are higher in

both samples under the distance weight matrix, which seems to imply that the problem

is more acute in that setting. Lastly, the overall fit of the model, as measured by

R2, improves substantially relative to the first column with the addition of the spatial

variables, but remains poorer than that of the factor-only model in the second column

of the table. The same applies to the R̄2, even though the inclusion of the factor uses

up a considerable number (i.e., T + n) of degrees of freedom.

Overall, comparison of Tables 3 and 6 shows that both the common factor and the

spatial effects contribute to the model’s empirical performance – they complement each

other in their ability to account for cross-sectional dependence, and to track the variation
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Table 6: Robustness checks

All countries
Spatial only

None Factor only Trade Distance
gt−1 0.595 0.328 0.372 0.404

(42.699) (24.898) (29.334) (32.063)
Wgt 0.557 0.278

(26.184) (14.460)
Wgt−1 0.040 0.198

(1.487) (9.077)

Pesaran CD statistic 41.289 0.551 13.134 26.815
(p-value) (0.000) (0.291) (0.000) (0.000)
Exponent of CSD 0.889 0.473 0.597 0.802
R2 0.139 0.222 0.175 0.153
R̄2 0.139 0.197 0.175 0.153

Advanced countries
Spatial only

None Factor only Trade Distance
gt−1 0.691 0.384 0.436 0.446

(17.452) (12.323) (14.692) (14.869)
Wgt 0.718 0.638

(29.984) (24.055)
Wgt−1 -0.185 -0.136

(-4.396) (-3.185)

Pesaran CD statistic 38.375 2.580 2.582 7.533
(p-value) (0.000) (0.005) (0.005) (0.000)
Exponent of CSD 0.992 0.792 0.712 0.818
R2 0.185 0.513 0.464 0.426
R̄2 0.185 0.476 0.463 0.425
Notes: GDP growth is the first difference of the log of real GDP. ’Pesaran CD statistic’
is the cross-sectional dependence statistic of Pesaran (2015). ’Exponent of CSD’ is
the exponent of cross-sectional dependence of Bailey, Kapetanios and Pesaran (2015).
T-statistics in brackets. The sample period covers 1970-2016.
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of the dependent variable. Inspection of the R̄2 suggests that the encompassing models

in Table 3 provide the best fit to the data despite their consumption of degrees of

freedom.

Table 7 reports further robustness checks on the specification of the empirical

model. The first two columns add to the baseline specification in column 1 of Table 3

a spatial error term. The spatial error is significant only in the full sample under the

distance weight matrix. Under such specification, the full-sample contemporaneous

spatial lag coefficient becomes significantly negative, while the space-time lag

coefficient becomes significantly positive. In all other cases, the spatial lag and

space-time lag are insignificant. The CD statistic suggests the presence of residual

cross-sectional dependence.

The third and fourth column employ two factors in the estimation, rather than the

single factor used in the baseline specification. In light of the information criteria

reported in Table 2, this would represent an overparameterization of the model.

However, it is of little consequence for the parameter estimates, except perhaps for the

coefficient on the lagged dependent variable in the advanced-country sample, which is

somewhat larger than in Table 3. With an additional factor, the fit of the model

improves relative to the Table 3 baseline. Still, in the advanced-country sample the

CD statistics continue to show evidence against the null of weak cross-sectional

dependence.

4.6 Forecasting performance

Properly accounting for cross-sectional dependence can help improve the accuracy and

efficiency of growth forecasts. This has been illustrated by Bjornland, Ravazzolo, and

Thorsrud (2017) in the context of a latent factor model featuring one global factor.

They find that exploiting the informational content of the common factor improves the

accuracy of growth forecasts across a large panel of countries.

Our empirical setting is different for two reasons. First, it features a lagged dependent
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Table 7: Further robustness checks

All countries
Spatial error Two factors

Trade Distance Trade Distance
gt−1 0.326 0.328 0.337 0.329

(24.828) (24.893) (25.454) (24.794)
Wgt 0.089 -0.238 0.365 0.128

(0.173) (-2.645) (12.735) (6.015)
Wgt−1 0.089 0.139 -0.103 0.016

(0.173) (3.495) (-2.237) (0.613)
Spatial error 0.513 0.327

(0.336) (4.106)

Pesaran CD statistic 1.806 3.847 -0.511 -0.245
(p-value) (0.035) (0.000) (0.305) (0.403)

Exponent of CSD 0.684 0.703 0.433 0.525
R2 0.227 0.246 0.308 0.307
R̄2 0.201 0.221 0.262 0.261

Advanced countries
Spatial error Two factors

Trade Distance Trade Distance
gt−1 0.439 0.380 0.435 0.402

(14.197) (11.217) (14.539) (12.815)
Wgt -0.143 0.196 0.766 0.261

(-0.159) (0.237) (39.099) (5.453)
Wgt−1 0.021 -0.230 -0.243 -0.029

(0.057) (-0.918) (-6.534) (-0.445)
Spatial error 0.866 0.006

(1.059) (0.008)

Pesaran CD statistic -1.865 -1.14 1.665 -3.292
(p-value) (0.031) (0.127) (0.048) (0.000)

Exponent of CSD 0.527 0.430 0.615 0.536
R2 0.610 0.520 0.699 0.638
R̄2 0.580 0.483 0.648 0.578
Notes: GDP growth is the first difference of the log of real GDP. ’Pesaran
CD statistic’ is the cross-sectional dependence statistic of Pesaran (2015).
’Exponent of CSD’ is the exponent of cross-sectional dependence of Bailey,
Kapetanios and Pesaran (2015). T-statistics in brackets. The sample period
covers 1970-2016.
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variable. Second, it includes spatial effects in addition to a common factor. To assess

the forecasting performance of our model, and in particular the respective contributions

of the spatial effects and the common factor, we divide the sample into an estimation

period from 1970 to 2013 and a forecasting period from 2014 to 2016. We estimate

the model over the former period under both the distance and trade matrices, in the

latter case using a re-computed trade weight matrix covering the years 1970 to 2013.

We do this for the full model as well as the reduced models of Table 6 that exclude the

common factors and/or the spatial effects – a total of four model versions under each

weight matrix and country sample. Finally, for each of the model versions featuring a

common factor, we fit an autoregressive model to the estimated factor; in every case, an

AR(1) process proved sufficient.

Equipped with these estimates, we compute out-of-sample dynamic forecasts up to

3 years ahead. The results are reported in Table 8. The prediction performance is

measured by the root mean square error (RMSE). The upper panel reports results for

the full sample and the lower panel reports the results for the advanced country sample.

Several facts stand out. First, neglecting cross-sectional dependence altogether –

by omitting both spatial effects and common factors – results in abysmal forecasting

performance in all cases. Second, in both samples and at all horizons the best forecasts

result from a model including both common factors and spatial effects – with the latter

based on the trade weight matrix in the full sample, and the distance matrix in the

advanced-country sample.20 Third, the factor-only model is a close second: in both

samples, it outperforms the spatial-only models, by a margin that is especially large in

the advanced-country sample.

20In the advanced-country sample, Table 8 shows that the forecasting performance of the factor-and-spatial model
is much worse when using the trade weight matrix than when using the distance weight matrix. The reason is that
the estimated common factor exhibits much less persistence under the former specification, and therefore it is of
much less help in forecasting future growth.
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Table 8: Out-of-sample dynamic forecast performance (RMSE, percent)

All countries
Forecast horizon 1 year 2 years 3 years
CSD specification
None 2.870 4.603 3.724
Factor only 2.122 3.889 3.280
Spatial only: trade weight matrix 2.308 4.146 3.332
Spatial only: distance weight matrix 2.340 4.216 3.364
Factor and spatial: trade weight matrix 2.080 3.869 3.248
Factor and spatial: distance weight matrix 2.133 3.905 3.311

Advanced countries
1 year 2 years 3 years

None 2.077 5.139 1.951
Factor only 1.528 4.535 0.971
Spatial only: trade weight matrix 1.927 5.038 1.660
Spatial only: distance weight matrix 1.926 5.048 1.690
Factor and spatial: trade weight matrix 1.930 5.014 1.605
Factor and spatial: distance weight matrix 1.465 4.437 0.951
Notes: The table shows the RMSE of dynamic forecasts over 2014-2016 obtained
with model estimates using data for 1970-2013 under alternative specifications of
cross-sectional dependence. Specifications including a common factor use an AR(1)
model to predict its future values.
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5 Conclusion

Output growth displays substantial comovement across countries. Existing empirical

literature has modeled the cross-sectional dependence of growth as reflecting either

localized linkages across countries or regions, or pervasive common shocks – i.e., weak

and strong cross-sectional dependence, respectively. In this paper we have brought

both perspectives together by assessing the international comovement of GDP growth

in a setting that allows for both spatial dependence and latent common factors, using

annual GDP growth data over the years 1970–2016 for 117 advanced and developing

countries.

In the paper’s empirical setting, the dynamics of growth reflect the action of global

common factors as well as spatial effects accruing through the growth of economically

neighboring countries. Estimation employs a bias-corrected quasi-maximum likelihood

procedure recently developed by Shi and Lee (2017), alternatively considering all 117

sample countries, or a subsample of 21 advanced economies. To capture the interactions

among countries, we employ two alternative spatial weight matrices – one based on

bilateral trade, and another based on geographic distance. To determine the number

of latent common factors driving GDP growth across the world, we use a variety of

information criteria. On the whole, they indicate the presence of a single factor for both

country samples considered.

Under the two alternative specifications of the spatial weight matrix, growth across

the world reflects the action of global shocks, as captured by a latent common factor

which, as in Kose, Otrok and Whiteman (2003), we interpret as summarizing the

’global business cycle’. Also, growth displays significant inertia. In addition, there is

strong evidence of spatial effects across countries, although their magnitude is

consistently larger under the trade weight matrix than under the spatial weight

matrix. The implication is that both global shocks and local interactions are

important to understand the cross-country comovement of output growth.
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In turn, the estimated common factor is strongly positively correlated with worldwide

TFP growth, in line with the predictions of the standard real business cycle model.

Despite its simplicity, the empirical model does a good job at accounting for observed

growth patterns: it accounts for over 50 percent of the variation of GDP growth in the

advanced-country subsample, and over 20 percent in the full country sample.

Our results also shed light on the determinants of countries’ exposure to global shocks,

an issue at the core of the policy debate. We find that the impact of the common factor

on real output growth is bigger in countries that exhibit higher trade openness and a

larger degree of specialization on commodities. In contrast, the impact is smaller in

countries featuring greater financial depth.

Our results also illustrate the consequences of improperly ignoring cross-sectional

dependence when analyzing growth patterns across the world. Omitting both common

factors and spatial effects from the empirical model causes major distortions in the

parameter estimates, leading in particular to a gross overstatement of the persistence of

growth. It also results in a sharp deterioration of the model’s explanatory power, as well

as its out-of-sample forecasting performance. Adding either common factors or spatial

effects, but not both, helps ameliorate these problems, but does not fully solve them.

In summary, the paper’s encompassing specification including common factors along

with spatial effects offers the best performance in terms of both in-sample fit and out-of-

sample forecasts. Overall, these results confirm the need to account for cross-sectional

dependence, both strong and weak, in empirical modeling of growth across countries.
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Appendix A: Additional tables

Table A1: List of countries
All countries Advanced countries

Country ISO Code Country ISO code Country ISO Code

1 Albania ALB 61 Lesotho LSO 1 Australia AUS
2 Algeria DZA 62 Madagascar MDG 2 Austria AUT
3 Angola AGO 63 Malawi MWI 3 Belgium BEL
4 Argentina ARG 64 Malaysia MYS 4 Canada CAN
5 Australia AUS 65 Mali MLI 5 Denmark DNK
6 Austria AUT 66 Mauritania MRT 6 Finland FIN
7 Bahrain BHR 67 Mauritius MUS 7 France FRA
8 Bangladesh BGD 68 Mexico MEX 8 Germany DEU
9 Belgium BEL 69 Mongolia MNG 9 Greece GRC

10 Benin BEN 70 Morocco MAR 10 Ireland IRL
11 Bhutan BTN 71 Mozambique MOZ 11 Italy ITA
12 Bolivia BOL 72 Myanmar MMR 12 Japan JPN
13 Botswana BWA 73 Namibia NAM 13 Netherlands NLD
14 Brazil BRA 74 Nepal NPL 14 New Zealand NZL
15 Bulgaria BGR 75 Netherlands NLD 15 Norway NOR
16 Burkina Faso BFA 76 New Zealand NZL 16 Portugal PRT
17 Burundi BDI 77 Nicaragua NIC 17 Spain ESP
18 Cambodia KHM 78 Niger NER 18 Sweden SWE
19 Cameroon CMR 79 Nigeria NGA 19 Switzerland CHE
20 Canada CAN 80 Norway NOR 20 United Kingdom GBR
21 Chad TCD 81 Oman OMN 21 United States USA
22 Chile CHL 82 Pakistan PAK
23 China CHN 83 Panama PAN
24 Colombia COL 84 Paraguay PAR
25 Comoros COM 85 Peru PER
26 Costa Rica CRI 86 Philippines PHL
27 Cyprus CYP 87 Poland POL
28 Cote d’Ivoire CIV 88 Portugal PRT
29 Congo, Dem. Rep COG 89 Qatar QAT
30 Denmark DNK 90 Repblic of Korea KOR
31 Djibouti DJI 91 Romania ROM
32 Dominican Republic DOM 92 Saudi Arabia SAU
33 Ecuador ECU 93 Senegal SEN
34 Egypt EGY 94 Sierra Leone SLE
35 El Salvador SLV 95 Singapore SGP
36 Ethiopia ETH 96 South Africa ZAF
37 Fiji FJI 97 Spain ESP
38 Finland FIN 98 Sri Lanka LKA
39 France FRA 99 Sudan SDN
40 Germany DEU 100 Swaziland SWZ
41 Ghana GHA 101 Sweden SWE
42 Greece GRC 102 Switzerland CHE
43 Guatemala GTM 103 Syria SYR
44 Guinea GIN 104 Thailand THA
45 Guinea Bissau GNB 105 Togo TGO
46 Haiti HTI 106 Trinidad and Tobago TTO
47 Honduras HND 107 Tunisia TUN
48 Hong Kong HKG 108 Turkey TUR
49 Hungary HUN 109 Uganda UGA
50 India IND 110 United Arab Emirates ARE
51 Indonesia IDN 111 United Kingdom GBR
52 Iran IRN 112 United Republic, Tanzania TZA
53 Ireland IRL 113 United States USA
54 Isreal ISR 114 Uruguay URY
55 Italy ITA 115 Venezuela VEN
56 Jamaica JAM 116 Viet Nam VNM
57 Japan JPN 117 Zambia ZAM
58 Jordan JOR
59 Kenya KEN
60 Lao PDR LAO
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Table A3: Correlation between actual and fitted values: All countries, trade and distance weight
matrices

Country Trade Distance Country Trade Distance

Albania 0.385 0.403 Malawi 0.000 -0.039
Algeria 0.123 0.102 Malaysia 0.579 0.555
Angola 0.491 0.521 Mali 0.219 0.140
Argentina 0.286 0.332 Mauritania 0.088 0.115
Australia 0.241 0.185 Mauritius 0.320 0.345
Austria 0.647 0.481 Mexico 0.441 0.333
Bahrain 0.445 0.334 Mongolia 0.673 0.661
Bangladesh 0.291 0.357 Morocco -0.382 -0.422
Belgium 0.672 0.601 Mozambique 0.476 0.401
Benin -0.080 -0.028 Myanmar 0.620 0.570
Bhutan 0.305 0.345 Namibia 0.409 0.338
Bolivia 0.638 0.695 Nepal -0.115 -0.070
Botswana 0.508 0.568 Netherlands 0.761 0.590
Brazil 0.610 0.618 New Zealand 0.361 0.362
Bulgaria 0.636 0.634 Nicaragua 0.273 0.297
Burkina Faso 0.087 -0.023 Niger 0.046 0.053
Burundi 0.215 0.197 Nigeria 0.445 0.448
Cambodia 0.588 0.581 Norway 0.648 0.588
Cameroon 0.520 0.518 Oman 0.218 0.166
Canada 0.770 0.679 Pakistan 0.161 0.202
Chad 0.271 0.281 Panama 0.345 0.364
Chile 0.479 0.521 Paraguay 0.454 0.468
China 0.003 0.077 Peru 0.524 0.527
Colombia 0.668 0.691 Philippines 0.627 0.624
Comoros -0.027 0.056 Poland 0.627 0.637
Costa Rica 0.608 0.571 Portugal 0.710 0.584
Cyprus 0.456 0.459 Qatar 0.529 0.520
Cote d’Ivoire 0.367 0.360 Repblic of Korea 0.393 0.396
Congo, Dem. Rep. 0.750 0.771 Romania 0.782 0.797
Denmark 0.584 0.469 Saudi Arabia 0.402 0.441
Djibouti 0.080 0.123 Senegal -0.096 -0.161
Dominican Republic 0.438 0.447 Sierra Leone 0.495 0.496
Ecuador 0.464 0.489 Singapore 0.593 0.594
Egypt 0.272 0.303 South Africa 0.614 0.631
El Salvador 0.760 0.728 Spain 0.832 0.753
Ethiopia 0.393 0.387 Sri Lanka 0.362 0.310
Fiji -0.031 -0.031 Sudan 0.213 0.221
Finland 0.718 0.681 Swaziland 0.461 0.425
France 0.808 0.733 Sweden 0.590 0.506
Germany 0.656 0.582 Switzerland 0.615 0.539
Ghana 0.472 0.477 Syria 0.320 0.325
Greece 0.585 0.559 Thailand 0.575 0.550
Guatemala 0.847 0.870 Togo 0.213 0.205
Guinea 0.109 0.089 Trinidad Tobago 0.712 0.705
Guinea Bissau -0.189 -0.146 Tunisia 0.266 0.243
Haiti 0.095 0.148 Turkey 0.331 0.307
Honduras 0.583 0.548 United Republic, Tanzania 0.559 0.526
Hong Kong 0.556 0.646 Uganda 0.554 0.512
Hungary 0.657 0.667 United Arab Emirates 0.371 0.430
India 0.031 0.081 United Kingdom 0.565 0.493
Indonesia 0.510 0.468 United States 0.617 0.599
Iran 0.371 0.378 Uruguay 0.608 0.647
Ireland 0.442 0.442 Venezuela 0.404 0.426
Isreal 0.420 0.426 Viet Nam 0.323 0.318
Italy 0.748 0.642 Zambia 0.400 0.391
Jamaica 0.419 0.324 Median 0.460 0.463
Japan 0.640 0.568
Jordan 0.541 0.544
Kenya 0.482 0.492
Lao PDR 0.079 0.036
Lesotho 0.354 0.347
Madagascar -0.032 -0.146
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Table A4: Correlation between actual and fitted values: Advanced countries, trade and distance
weight matrices

Country Trade Distance
Australia 0.302 0.327
Austria 0.758 0.667
Belgium 0.743 0.738
Canada 0.842 0.779
Denmark 0.725 0.705
Finland 0.794 0.849
France 0.899 0.858
Germany 0.789 0.803
Greece 0.599 0.637
Ireland 0.995 0.622
Italy 0.855 0.837
Japan 0.671 0.716
Netherlands 0.850 0.809
New Zealand 0.323 0.335
Norway 0.652 0.658
Portugal 0.808 0.799
Spain 0.893 0.871
Sweden 0.725 0.778
Switzerland 0.652 0.641
United Kingdom 0.688 0.721
United States 0.776 0.812
Median 0.758 0.738
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