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This study proposes a bi-objective mixed possibilistic, two-stage stochastic programming
model to address supplier selection and order allocation problem to build the resilient
supply base under operational and disruption risks. The model accounts for epistemic
uncertainty of critical data and applies several proactive strategies such as suppliers’
business continuity plans, fortification of suppliers and contracting with backup suppliers
to enhance the resilience level of the selected supply base. A five-step method is designed
to solve the problem efficiently. The computational results demonstrate the significant
impact of considering disruptive events on the selected supply base.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Today’s competitive global market is forcing companies to outsource some of their products and services. Outsourcing
can help companies to reduce costs and enhance their competitive capabilities through focusing on their core competencies
(Schoenherr et al., 2012). A group of suppliers from which a company purchases goods and services is called the ‘‘supply
base’’. Selecting the best supply base is a challenging decision in outsourcing and it plays a critical role in the success of sup-
ply chains; especially global ones (Bhutta and Huq, 2002). The Supplier Selection and Order Allocation (SS&OA) problem is a
complex decision problem involving multiple tangible and intangible criteria (Aissaoui et al., 2007; Ho et al., 2010). It aims to
select the best portfolio of suppliers and to optimally allocate the buyer’s total demand among selected suppliers to satisfy
different purchasing criteria. Other considerations include meeting the required minimum order quantity and the limited
capacity of each supplier. Traditionally, the SS&OA problem has accounted for cost, quality and delivery time (i.e. QCD mea-
sures). However, today’s global supply chains are more prone to unexpected natural and man-made disasters such as floods,
volcanic eruptions, earthquakes, tsunamis, fires, transport accidents and labor strikes. In the wake of Japan’s earthquake in
2011, Apple suffered from shortage of key parts for its iPad 2 including its flash memory and super-thin battery which were
exclusively manufactured by Apple Japan (BBC News, 18 Mar 2011). Japan’s 2011 earthquake-triggered tsunami and the
Icelandic Volcano in 2010 disrupted global supply chains including the automotive sector and retail supply chains in UK
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(Massey, 7 April 2011; Hall, 16 Apr 2010). Auto maker Nissan was hit the hardest in the aftermath of Japan’s 2011 earthquake
because of its dependence on a factory in the earthquake zone that would supply 12% of its engines (BBC News, 18 Mar
2011). This forced the Nissan’s UK Sunderland plant to shut down for three days because of shortage of parts from Japan
(Massey, 7 Apr 2011). More recently, hurricane Sandy caused massive disruptions in US supply chains (Burnson, 30 Oct
2012). These events demonstrate that supply chain disruptions are detrimental to businesses from the lost productivity
and revenue standpoint. As such, with the growing reliance on global sourcing in recent years and consequently the increase
in the likelihood of disruptive incidents, providing a reliable level of resilience to the supply base to protect the buyer from
shortages and disruption in the supply flow is all the more critical.

Generally speaking, supply chain risks can be divided into two risk categories: Operational and Disruption (Tang, 2006).
Operational risks refer to those inherent uncertainties that inevitably exist in supply chains. These include, but are not
limited to, customer demand and cost rate uncertainty, and also supply uncertainty due to operational difficulties like equip-
ment failure, power outage and key personnel absence. Accounting for inherent uncertainty in the critical input data such as
demand, cost, and capacity parameters through uncertainty programming approaches (e.g. fuzzy/possibilistic/stochastic/
robust programming) is one way to deal with operational risks that is common in the literature (Sawik, 2011). Disruption
risks refer to the major disruptions caused by natural, man-made or technological threats such as earthquakes, floods,
terrorist attacks or employee strikes. Notably, operational risks are caused by medium to high likelihood, low impact
as-usual events which have only short term negative effects while disruptions are caused by low likelihood, high impact
disruptive events which may have short or long term negative effects on the system.

This paper aims to develop a new decision model to build resilient supply bases for global supply chains in response to
uncertainties arisen from major disruptions caused by natural and man-made disasters and operational risks. To this end, a
bi-objective mixed possibilistic, two-stage stochastic programming model with a new resilience objective is proposed in
which several proactive strategies such as fortifying suppliers at different discrete levels and suppliers’ business continuity
plans are taken into account. Noteworthy, documented collection of procedures and information that is developed, compiled
and maintained in readiness for use in an incident to enable an organization to continue to deliver its critical activities at an
acceptable pre-defined level are called business continuity plans (ISO 22301, 2012). Furthermore, business continuity man-
agement is a management process which identifies possible internal and external threats/risks and their impact to business
processes and provides a framework for organizational resilience (ISO 22301, 2012). In this way, implementing a business
continuity management system (BCMS) within an organization can protect the organization against various disruptive
events by providing suitable business disaster recovery/continuity plans for identified critical business processes/functions
proactively (Sahebjamnia et al., 2015; Torabi et al., 2014). To the best of our knowledge, this paper is the first one in the
literature which accounts for business continuity related concepts/measures in a supply chain planning decision problem
especially in a SS&OA problem.

The remainder of the paper is organized as follows. Section 2 provides a review of the related literature. The problem
description and proposed model with developing a new resilience objective are respectively elaborated in Sections 3 and
4. The solution procedure is presented in Section 5. Section 6 presents some numerical examples along with their
computational results. Finally, Section 7 draws some conclusions from this study.
2. Literature review

A review of the related literature is presented below in two distinct but related research streams: supply disruption/risk
management and resilient supply chains.
2.1. Supply disruption/ risk management

Over the past few decades, especially after 11th September 2001, risk management has received increasing attention
from both practitioners and academia so that around fifty tools and methodologies have been developed for risk manage-
ment (Shi-Cho et al., 2008). Chopra and Sodhi (2004) categorised potential supply chain risks into nine categories: (a)
Disruptions, (b) Delays, (c) Systems, (d) Forecast, (d) Intellectual property, (e) Procurement, (f) Receivables, (g) Inventory,
and (h) Capacity. They identified events and conditions that drive these risks and the mitigation strategy against each kind
of risk. In this section, we review the most relevant published works accounting for disruption risks and common mitigation
strategies used in the supply side of a supply chain especially those addressing SS&OA problem under disruption.

Dual/multiple sourcing instead of single sourcing is a common approach to decreasing supply disruption risk in the litera-
ture. Although single sourcing is less expensive than multiple sourcing in normal conditions, supplier disruption in single
sourcing case can result in greater loss than dual/multiple sourcing. Accordingly, some works address determining the opti-
mal number of suppliers in the presence of disruption risks. For example, for the first time, Berger et al. (2004) assumed two
types of catastrophes: ‘‘super-events’’ which affect many/all suppliers and ‘‘unique events’’ which disrupt a single supplier.
They considered the financial loss caused by disasters and the operating cost of working with multiple suppliers and pro-
posed a decision tree to decide on optimal number of suppliers by minimizing the expected cost function. Ruiz-Torres
and Mahmoodi (2006) developed an extension to the Berger et al. (2004) and presented a decision model for optimizing
the allocation of demand across a set of suppliers by considering three key cost factors: the expected losses due to supplier
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failure to deliver, the purchasing costs, and the cost of maintaining a set of suppliers. Yu et al. (2009) looked at debate
between single sourcing and dual sourcing when demand is price-sensitive and the market scale increases when a supply
disruption occurs. They concluded that either single or dual sourcing can be effective depending on the magnitude of the
disruption probability. Meena and Sarmah (2013) developed a mixed integer non-linear programming model for order
allocation by a manufacturer/buyer among multiple suppliers under supply disruption risks while considering different
capacity, failure probability and quantity discounts for each supplier aiming to minimize the total cost.

Contracting with backup suppliers is another approach which aims to ameliorate supply disruption risk. Hou et al. (2010)
considered a buyer who has two supply options: a cheaper but unreliable supplier (the main one) while the other one is per-
fectly reliable and responsive, but is more expensive (the backup supplier). They studied a buy-back contract between the
buyer and the backup supplier when the main supplier experiences disruptions.

Fortification of suppliers against major disruptions is another proactive strategy which supply chain managers recently
began employing to mitigate the impacts of disruption risks. For example, after Thailand’s great flood in 2011, factory man-
agers of the Nava Nakorn industrial zone, where over 220 factories of electronics and computer components suppliers are
located, decided to construct a giant flood wall around the perimeter and sealable aluminum flood barriers across entrance
points (The New York Times, 21 Jan 2012). In this respect, Sawik (2013) addressed the SS&OA problem under disruption risk
by considering fortification of suppliers as an effective strategy to decrease disruption risks. One of the main assumptions in
Sawik (2013) is that the capacity of a fortified supplier remains unchanged after any disruptive event. This may not be
realistic. For example, fortifying a supplier against flood risk may not protect it against other disruptive events such as
earthquakes. In an effort to be more realistic, in this paper, we give an extension to this assumption and assume that the
fortification of a supplier will decrease the impact of disruption events on supplier’s production capacity based on the level
of protection and the type of disruption event.

2.2. Resilient supply chains

Resilience is a multidisciplinary concept, and an interesting subject of scientific research in different disciplines such as
psychology, ecology, economy. Resilience can also be found in emerging interdisciplinary fields such as emergency manage-
ment, sustainable development and supply chain risk management. Supply chain resilience is a relatively new concept that
can be defined as ‘‘the adaptive capability of the supply chain to prepare for unexpected events, respond to disruptions, and
recover from them by maintaining continuity of operations at the desired level of connectedness and control over structure
and function’’ (Ponomarov and Holcomb, 2009). Also, Falasca et al. (2008) defined resilience as the ability of a supply chain
system to reduce the probabilities of disruptions, to reduce the consequences of those disruptions and the time to recover
disrupted operations to their normal performance. There are many practical advices in the literature in order to design a resi-
lient supply chain (see for example: Rice and Caniato, 2003; Christopher and Peck, 2004; Sheffi, 2005). According to Sheffi
(2005), the companies can develop the resilience in three general ways: (1) creating redundancies throughout the supply
chain; for example with holding extra inventory, maintain low capacity utilization, and contracting with multiple suppliers,
(2) increasing supply chain flexibility; for example with adoption of standardized processes, using concurrent instead of
sequential processes, plan to postpone, align procurement strategy with supplier relationships, and (3) changing the corpo-
rate culture. Christopher and Peck (2004) highlighted a number of discernible general principles that underpin resilience in
supply chains. They concluded that resilience implies flexibility and agility and its implications extend beyond process rede-
sign to fundamental decisions on sourcing and the establishment of more collaborative supply chain relationships based on
far greater transparency of information.

In spite of increasing publications about supply chain resilience in recent years, there are few quantitative models that
either address supply chain resilience performance, or assess effect of different strategies for providing supply chain resili-
ence. As mentioned by Spiegler et al. (2012), resilience implies not only minimizing deviations from a targeted state, but also
re-achieving this target as fast as possible. Hence, some of papers tried to model supply chain performance with different
resilience related performance measures. Datta et al. (2007) studied a multi-product, multi-country supply chain and for
the first time, presented an agent-based computational framework with the aim of improving operational resilience. They
judged supply chain resilience in terms of four performance measures: customer service level, production change-over time,
average inventory and total average network inventory. Falasca et al. (2008) proposed a simulation-based framework with
incorporating three determinants of supply chain resilience (density, complexity, and node criticality) into the process of
supply chain design. They developed a quantitative approach for assessing supply chain resilience using the ‘resilience
triangle’ introduced by Tierney and Bruneau (2007).

Colicchia et al. (2010) focused on inbound supply risk in a global sourcing context and assumed the variability of the sup-
ply lead-time as a proxy of the supply chain resilience. To assess the greenness and resilience of the automotive companies,
Azevedo et al. (2011) presented a multi attribute model to create a composite index entitled GResilient with using Delphi
technique. Carvalho et al. (2012) simulated a three-echelon supply chain concerned with a real case and evaluated six alter-
native supply chain scenarios (defined by additional stock and alternative transportation after the occurrence of a disrup-
tion) for improving supply chain resilience. Miller-Hooks et al. (2012) formulated the problem of measuring a freight
transportation network’s resilience level as a two-stage stochastic program to determine the optimal set of preparedness
and recovery actions in transportation arcs needed to achieve resilience level. They defined network resilience level as
the expected fraction of demand that can be satisfied at post-disaster. Schmitt and Singh (2012) developed a simulation
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model motivated by an actual supply chain and analyzed inventory placement and back-up strategies in a multi-echelon net-
work and their effects on reducing supply chain risk and improving the system’s resilience. They used the percentage of cus-
tomers who are satisfied immediately from stock as a performance metric monitored by the simulation. In another
interesting work, Spiegler et al. (2012) developed the integral of time multiplied by the absolute error (ITAE) as an appro-
priate control engineering measure of resilience in a one-echelon make-to-stock supply chain and argued that the minimum
value of ITAE corresponds to the best response and recovery with the lowest deviation from the target, or readiness.

There are very few quantitative models addressing the resilient supplier selection problem in the literature. Haldar et al.
(2012) developed a four tier process using multi-attribute decision making methods and quality function deployment to rate
and choose the best supplier(s). They used five criteria of resilience for the supplier selection process including the: supply
chain density, supply chain complexity, responsiveness, node criticality and re-engineering. More recently, Haldar et al.
(2014) proposed an integrated fuzzy group decision making approach for strategic supplier selection of a manufacturer
via incorporating the importance degrees of specific attributes as linguistic variables formulated by triangular and trape-
zoidal fuzzy numbers. Sawik (2013) addressed the SS&OA problem with disruption risks and developed some protection
(i.e. resilience) strategies including the selection of a number of suppliers to be protected against disruptions and allocation
of emergency inventories to be pre-positioned at the protected suppliers in order to decrease the disruption risks and
increasing the resilience level of supply network. Through some computational experiments, the author concluded that
the probability of supply disruption is the most important factor for the allocation of demand among the suppliers and that
diversified supply base can mitigate impact of disruption risks.

To the best of our knowledge, this is the first time that a bi-objective mixed possibilistic, two-stage stochastic model is
proposed to analyze the trade-off between cost and resilience level of supply base. The model accounts for epistemic uncer-
tainty (i.e. lack of knowledge about the precise values) of critical data and includes a new resilience objective function to
calculate the resilience level of the selected supply base. Furthermore, for the first time in the literature, the proposed model
collectively considers different proactive strategies such as suppliers’ business continuity plans, fortification of suppliers at
various discrete levels and contracting with backup suppliers to enhance the resilience level of the selected supply base.
3. Problem description and formulation

In this paper, we consider a manufacturer who produces different types of products. After conducting a strategic decision
process (Vining and Globerman, 1999), the manufacturer has decided to outsource some items required for the production to
a pre-determined set of qualified suppliers. The pre-determined suppliers are divided into two groups. The first group of sup-
pliers have acceptable performances in traditional criteria (QCD measures) but they do not have any clear plans for continu-
ity and recovery purposes after disruptions. The second group includes those suppliers that have implemented a certain level
of business continuity management system. This second group has pre-established business continuity and disaster recovery
plans to deal with major disruptions. More specifically, we assume that the second group includes those suppliers which are
better than the first group’s suppliers in quality and delivery criteria but not as good as the first group in cost criterion.

For each supplier in the second group, a disruption profile including the main characteristics of the established business
continuity management system (e.g. recovery times) is formed. In particular, each supplier’s disruption profile consists of the
following items:

� Different types of disruptive events that can disrupt each respective supplier.
� The likelihood of these disruptive events and their impact on the supplier’s critical processes/operations and subse-

quently production capacity. These can be determined according to the results of so-called ‘‘business impact analysis’’
and ‘‘risk assessment’’ processes which are crucial steps in the development stage of respective business continuity man-
agement system. Interested readers are referred to Torabi et al. (2014) to see more details on business impact analysis.
� Estimated recovery times for different fortification levels based on developed business continuity or disaster recovery

plans to deal with disruptions.

It is worth noting that all possible disruption scenarios are analyzed to account for suppliers’ disruption risks. In each pos-
sible scenario, each supplier may be faced with a disruptive event and each disruptive event may impact different suppliers
in multiple ways. If a disruptive event occurs, each disrupted supplier of the first group will be negatively impacted such that
it can only meet part of its obligation. However, the second group suppliers will be able to conduct their business continuity
or disaster recovery plans and still be able to meet their obligations.

In order to make the model more practical, it is assumed that suppliers may have some unused production capacity even
after the disruptive events. In the real world, companies sometimes have redundant processing capacity at other locations to
enable critical business functions (such as handling customer orders, overseeing production and deliveries, and managing
the supply chain) to be continued or recovered quickly (Intel Business Continuity Practices, 2014). So, these suppliers can
have some capacity to produce even after the disruptive events. Also, there are some disruptive events that may not destroy
the supplier’s production capacity completely. For example, events such as labor strike or power outages lasting for two
weeks where the considered time horizon is one month may decrease only 50 percent of supplier’s production capacity.



Table 1
Characteristics of scenarios for an example with three suppliers and one disruptive event in each supplier.

Scenario no. Set of non-disrupted suppliers Set of disrupted suppliers Remained capacity of suppliers (in percentage)

1 {1, 2, 3} {} {100, 100, 100}
2 {1, 2} {3} {100, 100, 0}
3 {1, 3} {2} {100, 20, 100}
4 {2, 3} {1} {20, 100, 100}
5 {1} {2, 3} {100, 40, 80}
6 {2} {1, 3} {0, 100, 20}
7 {3} {1, 2} {25, 0, 100}
8 {} {1, 2, 3} {20, 0, 0}
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Table 1 shows the scenarios and their characteristics for an example with three suppliers and one disruptive event in each
supplier.

It is also assumed that the amount of items sent from a disrupted supplier (especially second group’s suppliers after
recovery) cannot be more than purchased amounts from the supplier in the normal situation. However, the main advantage
of the second group’s suppliers is that they are able to deliver their obligation even when they experience disruption. Thus, if
a second group’s supplier is not disrupted while some other suppliers are, the manufacturer can buy more items from this
supplier with considering it as a backup supplier. Additionally, since the probability of several disruptive events affecting a
supplier simultaneously is very low in practice, it is assumed that under each scenario, at most one event can happen at each
supplier. In the real world, those suppliers who are in the same geographic zones can be jointly affected after a disruptive
event such as earthquake. Nevertheless, in this paper, it is assumed that suppliers are spatially dispersed, such that a disrup-
tive event would not affect all suppliers simultaneously.

The following strategies are employed in the model to enhance the supply side resilience level of the manufacturer:

i. Allowing multiple sourcing for each outsourced item.
ii. Protecting (fortifying) some of second group’s suppliers against disruptions: these suppliers can be fortified in differ-

ent levels each of which has its own cost and reduction level of the impact of disruptions on suppliers’ production
capacity. For example, Table 2 shows the positive effect of fortification, i.e. the higher the fortification level the higher
the remaining capacity in the aftermath of each respective disruptive event. It is assumed that this supplier can be
fortified at four levels: level 1 indicates buying enough spare power generators, level 2 is revamping supplier’s build-
ing with budget A, level 3 is buying power generators and renovation of supplier’s building with budget A, and level 4
is renovation of supplier’s building with budget B (A < B).

iii. Maintaining extra pre-positioned inventories, which could be used after any disruption at the fortified suppliers, is
allowed. However, the available space at each supplier for inventory pre-positioning is limited (it is assumed to be
equal to respective production capacity in this paper).

iv. Possibility of contracting with some suppliers as backup suppliers which will be used in emergency situations (these
suppliers may provide excess required items with higher unit costs and lead-times). However, disrupted suppliers
under each scenario cannot be served as backup suppliers.

v. Considering suppliers’ business continuity plans and different recovery levels in the second group of suppliers (with
considering this strategy, suppliers can meet higher levels of their obligations).

Furthermore, the planning horizon is assumed to be a single mid-term period (for example, a horizon of six months or one
year) and the manufacturer’s total demand must be met at the end of the planning horizon under any circumstances.
Nevertheless, the manufacturer only pays for those items which are delivered (not for the ordered items which may not
be delivered because of disruptions). Also, it is assumed that the overall defective rate of each purchased item by manufac-
turer must be lower than a pre-defined target level and according to the lean supply principles; the total number of main
suppliers in the normal situation should not be greater than a pre-specified number.

Lastly, inherent uncertainty in demand and supply data is one of the main challenges in supply chain planning related
decision problems (e.g. SS&OA problem). Including such uncertainty within formulated decision models is of vital impor-
tance for accurately representing the impact of possible realizations of uncertain parameters on the underlying decision
problem being modeled (Klibi et al., 2010).

Generally speaking, randomness and fuzziness are two main sources of uncertainty (Mousazadeh et al., 2014).
Randomness stems from the random (chance) nature of data where the underlying action can be repeated many times. In
other words, every frequency-based phenomenon could be formulated as random/stochastic data for which, discrete or
continuous probability distributions are estimated based on available and sufficient historical data. Stochastic (or robust)
programming approaches are usually used to cope with this kind of uncertainty in the presence (or absence) of distributional
information about such random data.

However, there might be not enough historical/objective data to model uncertain parameters as random data. This
is especially the case for scenario-dependent parameters due to special characteristics of any disruption and non-
repetitiveness of related events. So, it is difficult or even impossible/meaningless to find probabilistic distributions for such



Table 2
The amount of improvement in remaining capacity of a supplier in presence of each disruptive event because of its fortification at different levels.

Fortification level Amount of increase in remaining capacity of supplier in the presence of each disruptive event (in
percentage)

Earthquake Flood Power outage Fire

1 0 0 100 0
2 20 30 0 30
3 20 30 100 30
4 40 40 0 70
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uncertain parameters. Consequently, in such situations, we will be faced with imprecise parameters tainted with epistemic
uncertainty whose impreciseness arises from the lack of knowledge regarding their exact values. Practically, in order to
provide reasonable estimations for such imprecise parameters, we often have to rely on judgmental data extracted from
decision makers (i.e. field experts). Naturally, these judgmental data are mainly based upon the experts’ experiences, their
subjective while professional opinions and feelings where there might be some relevant but insufficient objective data as
well. Accordingly, these parameters could be formulated through the possibility theory as a complement to probability the-
ory. In this way, a suitable possibility distribution could be adopted for each possibilistic data typically in the form of triangu-
lar or trapezoidal fuzzy numbers. Possibilistic programming approaches are usually applied to solve those optimization
problems facing with such imprecise data (Torabi and Hassini, 2008; Pishvaee and Torabi, 2010).

It is worth noting that there are considerable differences between stochastic and possibilistic programming approaches as
their underlying data come from different uncertain environments. As the main difference, stochastic programming
approaches originate from probability theory and the presence of sufficient objective/historical data while possibilistic
programming approaches originate from possibility theory and rely on subjective data extracted from experts’ judgments
due to unavailability and/or non-attainability of required objective data. More details on these differences can be found
in Mousazadeh et al. (2014).

As an example for an imprecise (i.e. possibilistic) data, assume that the experts estimate the remained capacity of a sup-
plier after a disruptive event to be ‘‘about 70%’’ according to their subjective knowledge and professional experiences and
feelings. Meanwhile, they do not expect this percentage to be lower than 50% and higher than 85%. Such imprecise data could
be modeled as a triangular fuzzy number for which, the most pessimistic, the most likely and the most optimistic values are
50%, 70% and 85%, respectively and denoted by the triangular fuzzy number (0.5, 0.7, 0.85).

In our model, there is an epistemic uncertainty regarding exact values of some critical parameters (such as demands and
unit fortification costs of suppliers) due to incompleteness and/or unavailability of required data. As such, these data have to
be estimated mostly by relying on the subjective opinions/experiences of experts. Accordingly, these parameters are
assumed to be imprecise (possibilistic) in nature. In this way, it is assumed that a suitable possibility distribution based upon
both available objective data and subjective opinions of decision makers has been estimated for each imprecise parameter in
the form of a triangular fuzzy number, same as ~n ¼ ðnp;nm;noÞ, where np, nm and no are the most pessimistic value, the most
possible value, and the most optimistic value of ~n estimated by a decision maker (Torabi and Hassini, 2008).

4. The proposed SS&OA model

In our problem setting, a scenario-based modeling is used to include a number of discrete scenarios, which account for
disruption risks. Each random scenario is associated with a given likelihood (see Eq. (25)) and consists of given undisrupted
and disrupted suppliers in which, each disrupted supplier is faced with one specific disruptive event. We also deal with
imprecise (i.e. possibilistic) parameters tainted with epistemic uncertainty in our formulation in response to operational
risks according to the aforementioned explanation about imprecise parameters in Section 3. Accordingly, a bi-objective
mixed possibilistic, two-stage stochastic program with recourse is proposed to formulate the SS&OA problem under opera-
tional and disruption risks whose deterministic counterpart is finally derived given the discrete probability distribution of
the scenarios’ occurrences.

It is worth noting that the two-stage stochastic programming is one of the most widely applied approaches to deal with
two-stage decision problems. In a two-stage model, an initial decision is made in the first stage before knowing what random
scenario will be realized and what values the scenario-dependent parameters will take at the second stage. Consequently, a
recourse action is taken in the second stage in order to compensate for the decision made in the first stage (Falasca and Zobel,
2011).

In the decision problem under consideration, determining the backup suppliers and purchasing quantities from the main
suppliers as well as the fortification level of second group’s suppliers and the level of pre-positioned inventories at fortified
suppliers at pre-event phase (stage 1) constitute the first-stage decisions, since they must be made before the realization of
any random disruption. Furthermore, given the realized random scenario at the post-event phase, determining the required
extra quantities which must be purchased from the main and backup suppliers, required amount of pre-positioned inven-
tories to be used at post-event phase and the recovery level of second group’s disrupted suppliers are the second-stage or
recourse decisions.
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Below, we first define the notations, and then present the equivalent model of our original two-stage stochastic program.
The latter is actually a scenario-based possibilistic programming model due to existence of imprecise parameters in our
formulation. In Section 5, we will discuss how to convert this scenario-based possibilistic model into an equivalent auxiliary
crisp model (i.e. the defuzzified model). Notably, the crisp model is the final deterministic counterpart of the scenario-based
possibilistic model whose coefficients are entirely deterministic and can be directly solved by commercial optimization
packages like GAMS or a customized solution algorithm like a meta-heuristic.
4.1. Notations

The sets, indices, parameters, and variables used to formulate the problem mathematically are described below. Notably,
each parameter associated with the tilde sign (�) denotes an imprecise parameter associated with a triangular fuzzy
number.

Indices and sets:

V
 set of suppliers

I
 set of first group’s suppliers (I � V)

J
 set of second group’s suppliers (J � V)

E
 set of possible disruptive events that might be occurred at suppliers

Ei
 set of possible disruptive events that might be occurred at supplier i (Ei � E)

K
 set of outsourced items

S
 set of disruption scenarios (|S| shows the total number of scenarios)

Vs
 set of suppliers that are disrupted under scenario s (s 2 S and Vs � V)

Vs
 set of suppliers that are not disrupted under scenario s (s 2 S and Vs � V)

U
 set of possible fortification levels at the second group’s suppliers

Lie
 set of possible recovery levels of supplier i after disruptive event e (i 2 J and e 2 Ei)

i
 index of suppliers (i 2 V)

k
 index of outsourced items (k 2 K)

s
 index of disruption scenarios (s 2 S)

u
 index of possible fortification levels at the second group’s suppliers (u 2 U)

e
 index of possible disruptive events that might be occurred at suppliers (e 2 E)

eis
 index of the happened disruptive event at the supplier i under scenario s (i 2 Vs; s 2 S and eis 2 Ei)

l
 index of recovery levels at the second group’s suppliers (i 2 J; e 2 Ei and l 2 Lie)
Parameters:

~dk
 demand of item k over the decision horizon
eAi
 fixed cost of ordering from supplier i as a main supplier

~f i
 fixed cost of contracting with supplier i as a backup supplier

~pik
 unit price of item k purchased and shipped from supplier i

~p0ik
 unit price of item k purchased and shipped from backup supplier i

FeRiu
 fortification cost of supplier i at level u (i 2 J)

~hik
 per unit cost of pre-positioned emergency inventory of item k at supplier i (i 2 JÞ

Cai
 production capacity of supplier i at normal condition

Sci
 available storage space of supplier i (i 2 J)

aik
 per unit capacity consumption of supplier i for item k

~uik
 expected defect rate of supplier i for item k

Rk
 maximum acceptable defect rate of purchased item k (a pre-defined target level)

LTi
 lead time of supplier i

LT0i
 lead time of backup supplier i

pie
 occurrence likelihood of disruptive event e at supplier i (e 2 Ei)

Ps
 occurrence likelihood of scenario s

hie
 remained capacity of supplier i after disruptive event e (as a percentage of respective normal capacity)

bieu
 amount of increase in remaining capacity at supplier i (i 2 J) after event e because of its fortification at level u

RTl

ie
 recovery time of supplier i (i 2 J) after event e at recovery level l (l 2 Lie)

CLl

ie
 capacity of supplier i (i 2 J) after disruptive event e and recovery at level l (as a percentage of respective normal
capacity)
bik
 per unit required storage space of item k at supplier i

n
 maximum number of main suppliers allowed to be used in the normal situation to follow lean supply principles

M
 an arbitrary large constant
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First stage’s variables:

xik
 quantity of item k purchased from supplier i (i 2 V) at pre-disruption stage

zi
 1, if an order is placed with supplier i (i 2 V) as the main supplier; 0, otherwise

z0i
 1, if a contract is arranged with supplier i (i 2 V) as the backup supplier; 0, otherwise

yiu
 1, if supplier i (i 2 J) is fortified at level u; 0, otherwise

wik
 quantity of pre-positioned inventory of item k at fortified supplier i (i 2 J)
Scenario-based (i.e. second stage’s) variables:

x0iks
 quantity of item k that the manufacturer will receive from supplier i (i 2 V) at post-disruption stage under

scenario s

qiks
 quantity of item k used from the pre-positioned inventory in supplier i (i 2 J) at post-disruption stage under

scenario s

q0iks
 quantity of item k purchased from backup supplier i (i 2 V) at post-disruption stage under scenario s

RLl

ieis

1, if disrupted supplier i (i 2 J) is recovered at level l after event eis (eis 2 Ei) at post-disruption stage under
scenario s; 0, otherwise
Fig. 1 depicts the two different stages and their related variables. It should be noted that as mentioned earlier, x0 iks is the
amount of item k that the manufacturer will receive from supplier i under scenario s which is a portion of xik (see constraint
(16)). Nevertheless, if supplier i is not disrupted under scenario s (i 2 Vs), the manufacture will receive the quantities that are
ordered in the normal situation (i.e. x0iks ¼ xik 8s 2 S; k 2 K; i 2 Vs). In this way, if supplier i is disrupted under scenario s,
therefore, xik � x0 iks represents the ordered but undelivered quantity of item k under this scenario. Accordingly, in the devel-
oped model, we use xik instead of x0iks for undisrupted suppliers under scenario s (i 2 Vs) to avoid excess variables. For exam-
ple, see constraints (6).

4.2. Formulation

4.2.1. Objective functions
Total expected cost: The first objective function aims to minimize the total expected cost including the fixed ordering, pur-

chasing and shipping costs from main suppliers, costs of contract with backup suppliers, fortification costs, holding costs of
pre-positioned inventories, expected costs of purchasing and shipping items from backup suppliers and pre-positioned
inventories at fortified suppliers subtracted by expected cost of ordered but undelivered items.
Min TC ¼
X
i2V

eAizi þ
X
i2V

X
k2K

~pikxik þ
X
i2V

~f iz0i þ
X
i2J

X
u2U

FeRiuyiu þ
X
i2J

X
k2K

~hikwik

þ
X
s2S

Ps

X
i2Vs

X
k2K

~p0ikq0iks þ
X
i2J

X
k2K

~pikqiks �
X
i2Vs

X
k2K

~pik xik � x0iks

� �24 35 ð1Þ
Resilience level of supply bas: As an effort to quantify the resilience of a system, for the first time Bruneau et al. (2003)
introduced the ‘‘resilience triangle’’ which depends on the operating level loss and recovery time (see Fig. 2). This triangle
leads to a measure named ‘‘loss of resilience’’ in a system as follows:
R ¼
Z t1

t0

½100� QðtÞ�dt ð2Þ
where Q(t) represents the quality of the system’s infrastructure (i.e. usable capacity of the system) at the given time t. As
mentioned before, Eq. (2) merely represents the loss of resilience, not the resilience itself. Also, smaller triangles naturally
correspond to smaller values for R. To fix this problem, Zobel (2010) introduced the ‘‘predicted resilience’’ as follows:
RðX; TÞ ¼
T� � XT

2

T�
¼ 1� XT

2T�
X 2 ½0;1�; T 2 ½0; T�� ð3Þ
where T� (or T� � 1) is the larger area from which the area of resilience triangle for X and T is subtracted from it (see Fig. 3).
Noteworthy, T� is an upper bound on the length of recovery process, which is determined by the decision maker to repre-

sent the maximum allowable time that the manufacturer would be willing to wait for the recovery process to be terminated.
Any recovery process that takes longer than T�, would simply be replaced by an alternative one or abandoned. In business
continuity management system (BCMS) terminology, T� corresponds to the maximum tolerable period of disruption (MTPD)
which is one of the most important measures to keep the recovery process justifiable. Furthermore, the predicted resilience
is calculated based on Eq. (3) whenever the area above the response curve is triangle (i.e. when the recovery process is linear
over time). Otherwise, it must be calculated according to the shape of this area. Zobel (2014) has calculated the resilience
level of a system when the recovery process is non-linear. The recovery process in our problem setting is shown in Fig. 4.
In this figure, A, B, and C represent the amount of items provided by three different resilience strategies, and LTA, LTB, and
LTC denote the time of receiving items from the related resilience strategy. As can be seen, the area above the response curve
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(i.e. the shaded area which denotes the loss of resilience) is not triangle in our problem setting and it is calculated as
A ⁄ LTA + B ⁄ LTB + C ⁄ LTC.

Keeping above definitions in mind, in order to calculate the total resilience level of the selected supply base we calculated
the amount of items that the buyer will not receive without considering the resilience strategies including the inventory pre-
positioning (A strategy), contracting with backup suppliers (B strategy), and second group’s suppliers’ fortification and recov-
ery according to their business continuity management system (C strategy) as a scale for calculating the robustness, and the
needed time for receiving these items based on related strategies as a scale for calculating rapidity. In fact, the first part
shows the impact of disruptions on the manufacturer (deviation from a targeted state) and the second part shows capability
of the manufacturer to respond to the supply disruptions as fast as possible (re-achieving the target after disruption as fast as
possible). Thus, a new quantitative measure to calculate the loss of resilience of the selected supply base is proposed as
follows:
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RE0 ¼
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X
i2Vs

X
k2K

LT 0iq
0
iks þ
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i2J

X
k2K

LTiqiks þ
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i2J\Vs
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xik

� �
LTi þ
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The first two terms of Eq. (4) are the amount of items purchased from backup suppliers and the amount of items used
from pre-positioned inventory multiplied by the time needed for receiving these items from backup and main suppliers,
respectively. The third term approximates the excess amount of items that the second-type suppliers serve after disruption.
This amount is calculated according to their recovery level multiplied by the sum of delivery and recovery times. Please note
that the third term is non-linear. Obviously, a lower value of the calculated term (RE0) results in higher resilience of the sup-
ply network. To fix this problem, the predicted resilience (i.e. Eq. (3)) is used with a modification to show the resilience level
of the selected supply base. In the original predicted resilience, the vertical axis changes from 0 to 1. However, the vertical
axis in our problem denotes the total amount of items that the manufacturer needs. To include this difference, the following
formula is used:
RE ¼ 1� RE0

Q 	 T� ð5Þ
where Q denotes the total amount of items that the manufacturer needs. It should be mentioned that the manufacturer may
also face with some inner disruptions such as major machine breakdowns or workers strike but the second objective func-
tion is calculating only the supply side’s resilience of the manufacturer.

4.2.2. Constraints
X
i2Vs

xik þ q0iks

� �
þ
X
i2Vs

x0iks þ
X
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qiks P ~dk 8s 2 S; k 2 K ð6Þ
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aikðxik þ q0iksÞ 6 Cai 8s 2 S; i 2 Vs ð7Þ

X
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aikx0iks 6 hieis
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þ
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bieisuyiu

 !
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X
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~uikqiks 6 Rk
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X
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24 35 8s 2 S; k 2 K ð12Þ
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X
u2U

yiu 6 1 8i 2 J ð13Þ

qiks 6 wik 8s 2 S; k 2 K; i 2 J ð14ÞX
k2K

xik 6 M 	 zi 8i 2 V ð15Þ

x0iks 6 xik 8i 2 Vs; k 2 K; s 2 S ð16Þ

q0iks 6 M 	 z0i 8i 2 V ; k 2 K; s 2 S ð17Þ

q0iks ¼ 0 8s 2 S; k 2 K; i 2 Vs ð18ÞX
i2V

zi 6 n ð19Þ

X
l2Lieis

RLl
ieis
6 1 8s 2 S; i 2 J \ Vs ð20Þ

xik; x0iks;wik; qiks; q
0
iks P 0 8i 2 V ; k 2 K; s 2 S ð21Þ

yiu 2 f0;1g 8i 2 J; u 2 U ð22Þ

zi; z0i 2 f0;1g 8i 2 V ð23Þ

RLl
ieis
2 f0;1g 8i 2 J; s 2 S; l 2 Lieis

ð24Þ
Constraint (6) guarantees satisfying the manufacturer’s demand for each item under each scenario. Constraint (7) ensures
that the total ordered quantity to an undisrupted supplier as a main or backup supplier to be smaller than supplier’s produc-
tion capacity. Constraints (8) restrict purchasing quantity from the first group disrupted suppliers to suppliers’ available pro-
duction capacities after disruption. Constraint (9) limits purchasing amount from the second group’s disrupted suppliers to
suppliers’ available production capacities after disruption while considering their fortification and recovery levels. It is noted
that the first phrase in the right side of constraint (9) is non-linear. Constraint (10) guarantees that the quantity of items sent
from a disrupted supplier under any scenario should be greater than or equal to the amount of items purchased from the
supplier in the normal situation multiplied by the percentage of supplier’s remained capacity after disruption. Constraint
(11) represents that pre-positioned inventories are only stored in the fortified suppliers and the amount of pre-positioned
inventories do not exceed the available storage space. Constraint (12) guarantees that the overall expected defective rate
of each purchased item does not exceed the related maximum acceptable defective rate. Constraint (13) represents that a
second group’s supplier can be fortified at most at a specific level of fortification. Constraint (14) restricts amount of deliv-
ered items from the pre-positioned inventory to the amount provided at the pre-event phase. Constraint (15) guarantees that
the amount of items purchased from a main supplier are equal to zero if an order is not placed with this supplier as a main
supplier. Constraint (16) represents that the amount of each item sent from a disrupted supplier (especially the second
group’s suppliers after recovery) must be smaller than or equal to the purchased amount from the supplier in the normal
situation (i.e. stage 1). Constraint (17) guarantees that the amount of each item purchased from a backup supplier is equal
to zero if a contract is not arranged with the supplier as the backup supplier. Constraint (18) guarantees that the disrupted
suppliers under each scenario cannot be used as backup suppliers under that scenario. Constraint (19) states that the total
number of main suppliers in normal situation (i.e. pre-event phase) should be lower than the maximum number of
main supplier in the normal situation according to the lean supply chain principles. Constraints (20) represent that each dis-
rupted second group’s supplier can be recovered at most at a specific recovery level under each scenario. Finally, constraints
(21)–(24) show the type of decision variables. Also, with considering that disruptive events are occurred independently and
at most one event occurs at each supplier under each scenario, likelihood of scenarios can be calculated as follows:
Ps ¼
Y
i2Vs

1�
X
e2Ei

pie

 !" #Y
i2Vs

pieis
ð25Þ
As mentioned before, Eq. (5) and constraint (9) are non-linear. Since the non-linear terms are in the form of the products of
two binary variables or the product of a binary variable and a continuous non-negative variable, they can be easily converted
to linear forms based on methods used in You and Grossmann (2010). Noteworthy, although linearization introduces more
constraints and variables, it significantly reduces the computational effort. The linear form of the proposed model is reported
in Appendix A.
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5. Solution procedure

The proposed possibilistic scenario-based model is very complicated in many different aspects: (1) there might be many
scenarios in the model, even after implementing the scenario reduction procedure presented in Section 5.1, (2) the original
scenario-based model is of possibilistic type and converting it to an equivalent parametric crisp model requires solving
several crisp models, which obviously needs an efficient solution technique to keep the required computation time reason-
able, (3) the resulting crisp models are bi-objective and an efficient multi-objective method must be used to find their
compromise solutions, and (4) the resulting single-objective models in Section 5.3 are non-linear and solving them with
exact methods is not an easy task (note that even linearization adds around twelve sets of new constraints to these non-
linear model), Therefore, according to the high complexity of the proposed possibilistic scenario-based model, we use a
five-step solution procedure to solve it efficiently. These steps are as follows:
Step 1
 reduce the number of random disruption scenarios using the FCM clustering technique and construct the
possibilistic scenario-based (i.e. the mixed possibilistic two-stage stochastic programming) model
Step 2
 convert the resulting possibilistic scenario-based model into two equivalent auxiliary crisp (i.e. deterministic)
bi-objective models
Step 3
 convert the obtained crisp bi-objective models from Step 2 to their equivalent single objective models via
well-known augmented e-constraint method
Step 4
 solve the equivalent single objective models to obtain the efficient (i.e. Pareto-optimal) solutions of bi-
objective models resulting at Step 2 using a tailored Differential Evolution (DE) algorithm
Step 5
 repeat Step 4 with a new e vector to obtain a new efficient solution in the form of an interactive approach by
interacting with decision makers to obtain finally the most preferred efficient solution
The details of the algorithms used in steps 1 to 4 are described in Sections 5.1 to 5.4, respectively.

5.1. Scenario reduction procedure

The number of random disruption scenarios in the designed model increases exponentially with increasing the number of
qualified suppliers and disruptive events. For example, where the number of qualified suppliers and disruptive events in
suppliers are respectively five and twenty, the total number of scenarios will be equal to ð20þ 1Þ5. Solving the problem with
such huge number of scenarios is cumbersome or perhaps impossible; even with the help of meta-heuristic methods. In
order to reduce the number of scenarios, the FCM algorithm is used to cluster possible disruptive events at suppliers to
different clusters by which the centers of clusters are used as representatives of disruptive events. Two main characteristics
of each disruptive event in scenarios including the occurrence likelihood of disruptive event e at supplier i (pie) and remained
capacity of supplier i after disruptive event e (hie) are used in the clustering procedure.

The FCM algorithm introduced by Bezdek (1974), is one of the most popular fuzzy clustering methods because it is effi-
cient, straightforward, and easy to implement (Izakian and Abraham, 2011). FCM divides a set of E objects X ¼ fx1; x2; . . . ; xEg
in Rp space into C (1 < C < E) fuzzy clusters; where in our problem setting we can define E as the total number of possible
events (i.e. disruptions) at each supplier, C as the reduced number of events at the supplier after applying FCM algorithm,
and P as the main characteristics of disruptive events. Following five iterative steps show how the FCM algorithm can be
applied to cluster possible events at supplier i in the problem (adopted from Bezdek, 1974).

Step 1. Produce a random membership matrix according to the following equation:
U ¼
u11 	 	 	 u1E

..

.
uce

..

.

uC1 	 	 	 uCE

2664
3775 0 6 uce 6 1 ð26Þ
where uce is the membership degree of eth event to cluster center c and E is the total number of possible events at the
supplier i.

Step 2. Each cluster center is a virtual event with two main characteristics: the remained capacity of the supplier i after
this virtual event c (hic) and likelihood of the disruptive event c at this supplier (pic). Compute the cluster centers matrix (Ce)
according to Eq. (27).
Ce ¼

PE
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26666664

37777775 1 6 m <1 ð27Þ
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Step 3. Compute the objective function of FCM algorithm according to Eq. (28).
JFCMðU;CÞ ¼
XE

e¼1

XC

c¼1

um
ce 	 DðXie;CecÞ 1 < m ð28Þ
where m is a scalar termed the weighting exponent and DðXie;CecÞ is the Euclidean distance between event e with its two
characteristics (pie and hie) and cth cluster center.

Step 4. Compute the new membership matrix according to Eq. (29).
Unew ¼
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D
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ð29Þ
Step 5. Repeat step (2) to (4) until the following condition is satisfied:
jðJFCMÞJ � ðJFCMÞJ�1j < e ð30Þ
where e is the error level.
It is noted that the obtained cluster centers are the new set of virtual events for supplier i. These five steps can be applied

to reduce the number of disruptive events at each supplier. With reducing the number of events at each supplier, the total
number of disruption scenarios will be reduced accordingly.

5.2. The equivalent crisp model

Several methods have been developed in the literature to transform a possibilistic model to an equivalent crisp one.
Literature review approves that the credibility-based possibilistic programming approaches including the expected value,
the chance-constrained programming and the dependent chance-constrained programming models (see for example,
Ghodratnama et al., 2012; Pishvaee et al., 2012) are the most applied approaches to account for epistemic uncertainty in
input data. Among them, the possibilistic chance constrained programming approach is the most applied one in which
the decision maker can set a minimum confidence level as an appropriate safety margin for satisfaction of each possibilistic
constraint (see for example, Pishvaee et al., 2012). Recently, Xu and Zhou (2013) extended the possibilistic chance con-
strained programming approach by proposing the new fuzzy measure Me which is an extension to credibility measure.
Me unifies two standard fuzzy measures, i.e. the possibility (Pos) and necessity (Nec) measures. The advantage of these
two measures is to specify the degree of which a fuzzy (possibilistic) variable takes values in an interval with varying opti-
mistic–pessimistic attitudes. Noteworthy, the possibility measure indicates the possibility level of occurring an uncertain
event that involves possibilistic parameters, while the necessity measure shows the minimum possibility level of occurring
an uncertain event. Meanwhile, the credibility measure represents the certainty degree of occurring an uncertain event. In
practice, decision makers have different optimistic–pessimistic attitudes, and these optimistic–pessimistic parameters are
determined based on their own experiences and judgments. The possibility (Pos) and necessity (Nec) are two measures that
demonstrate those attitudes which are extremely optimistic and pessimistic. However, the measure Me is more flexible to
avoid extreme attitudes (i.e. something between optimistic and pessimistic views).

In this paper, the Me-based possibilistic programming method proposed by Xu and Zhou (2013) is adopted to solve the
possibilistic scenario-based model. With considering (H, P(H), Pos) as a possibility space, Xu and Zhou (2013) defined the
fuzzy measure Me as follows:
MefAg ¼ NecfAg þ kðPosfAg � NecfAgÞ ð31Þ
where A is a set in P(H) and kð0 6 k 6 1Þ is an optimistic–pessimistic parameter to determine the combined attitude of deci-
sion maker where ðPosfAg � NecfAgÞ is the range within which the value of the measure changes from pessimistic to opti-
mistic one.

For better understanding, consider the following general multi-objective possibilistic model:
max f 1ðx; nÞ; f 2ðx; nÞ; . . . ; f mðx; nÞ½ �

s:t:
grðx; nÞ 6 0; r ¼ 1;2; . . . ;p

x 2 X

�8><>: ð32Þ
where n is the vector of fuzzy/possibilistic variables (i.e. imprecise coefficients of objective functions and constraints). Now,
by using the expected value and chance constrained operators, we can rewrite the model (32) as follows:
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ECM :

max½E½f 1ðx; nÞ�; E½f 2ðx; nÞ�; . . . ; E½f mðx; nÞ��
s:t:
Chfgrðx; nÞ 6 0gP dr ; r ¼ 1;2; . . . ;p

x 2 X

8>>><>>>: ð33Þ
where E and Ch denote the expected value and chance constrained operators, respectively. There are several kinds of def-
initions for the expected value of a fuzzy variable. Xu and Zhou (2013) showed that the expected value of the triangular fuzzy
variable n = (r1, r2, r3) when r1 P 0 can be calculated from Eq. (34).
E½n� ¼ ð1� kÞ
2

r1 þ
1
2

r2 þ
k
2

r3 ð34Þ
where k is the optimistic–pessimistic parameter which is set by decision maker.
Also, in order to measure the chance of a fuzzy event, Xu and Zhou (2013) used the general fuzzy measure Me:
Chfgrðx; nÞ 6 0gP dr () Mefgrðx; nÞ 6 0gP dr ð35Þ
where dr (r = 1,2, . . .,p) denotes the decision maker’s minimum confidence level for satisfaction of r-th possibilistic con-
straint. Accordingly, by applying Eq. (35), model (33) is changed to:
ECM :

max½E½f 1ðx; nÞ�; E½f 2ðx; nÞ�; . . . ; E½f mðx; nÞ��
s:t:
Mefgrðx; nÞ 6 0gP dr; r ¼ 1;2; . . . ;p

x 2 X

8>>><>>>: ð36Þ
Xu and Zhou (2013) proved that for any x0 2 X the following relations are true:
Posfgjðx0; nÞ 6 0gP Mefgjðx0; nÞ 6 0gP Necfgjðx0; nÞ 6 0gP dj ð37Þ
Finally, with using Eq. (37), they transformed model (36) into two approximated crisp models, i.e. the lower approxima-
tion model (LAM) and the upper approximation model (UAM) as follow:
LAM :

max½E½f 1ðx; nÞ�; E½f 2ðx; nÞ�; . . . ; E½f mðx; nÞ��
s:t:
Necfgrðx; nÞ 6 0gP dr r ¼ 1;2; . . . ;p

x 2 X

8>>><>>>: ð38-1Þ

UAM :

max½E½f 1ðx; nÞ�; E½f 2ðx; nÞ�; . . . ; E½f mðx; nÞ��
s:t:
Posfgrðx; nÞ 6 0gP dr r ¼ 1;2; . . . ; p

x 2 X

8>>><>>>: ð38-2Þ
Now, suppose that the objective functions are linear (i.e. f jðx; nÞ ¼
Pn

i¼1~cij 	 xi; j ¼ 1; . . . ;m), and the fuzzy parameter ~cij is
considered as the triangular fuzzy number ~cij ¼ ðcij;ac

ij; b
c
ijÞ; where cij, ac

ij and bc
ij are the mean value, left and right spreads of ~cij

respectively. Accordingly, the equivalent models representing the LAM and UAM are as follows:
LAM :
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ð1�kÞ
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r P aT
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ð39-1Þ

UAM :
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ð1�kÞ
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8>>>>>><>>>>>>:
ð39-2Þ
In practice, people’s attitudes are usually different and may fluctuate between extremely optimistic attitude (Pos) and extre-
mely pessimistic attitude (Nec). The most important advantage of Xu and Zhou’s method is that the two approximation mod-
els (LAM and UAM) appropriately fit the changing optimistic–pessimistic attitudes of different decision makers. Noteworthy,
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since the UAM uses an optimistic attitude in constraints, the feasible region of the UAM is larger than that of the LAM. As a
result, the UAM will give better optimal solution, theoretically. When both of the LAM and the UAM are solved simultane-
ously, we will have an interval as a solution where the lower and upper bounds are the outputs of UAM and LAM, respec-
tively. By employing these two models, the decision maker will have the upper bound and the lower bound of the optimal
decision. In this way, more information is provided to the decision maker which will be helpful when selecting the final solu-
tion among the suggested ones (Xu and Zhou, 2013). The two crisp models of our proposed model using the Me measure are
reported in Appendix B.
5.3. The augmented e-constraint method

Both of the LAM and UAM (developed in the previous section) are bi-objective models. Several methods have been devel-
oped in the literature to solve the multi-objective programming models (e.g. weighted sum method, goal programming,
e-constraint method, Tchebycheff-based methods and fuzzy programming approaches). In this paper, we apply an improved
version of the e-constraint method by which the bi-objective models related to LAM and UAM are converted to their single-
objective counterpart. In the e-constraint method, the most important objective function (the first objective in this paper) is
optimized while the other objectives (here the second objective function) are added to the constraints as follows:
max TCðxÞ
s:t: REðxÞP e2

x 2 S

ð40Þ
In this way, the efficient (i.e. Pareto-optimal) solutions of our bi-objective LAM and UAM are obtained by parametrical
variation in the right hand side (e2) of constrained objective function (Mavrotas, 2009). The range of e2 can be calculated
by optimizing the constrained objective RE separately subject to the feasible set S and establishing the pay-off table.
Then, via dividing the range of constrained objective RE (r) to q equal intervals, different values for e2 can be calculated
as follows:
r ¼ REmax � REmin; el
2 ¼ REmax � r

q
� l l ¼ 0; . . . ; q� 1 ð41Þ
Nevertheless, the general form of e-constraint method has some disadvantages. For example, this method does not
guarantee efficiency of the obtained solutions (i.e. reaching to weakly efficient solutions). Mavrotas (2009) addressed some
of these disadvantages and proposed an improved version of the e-constraint method, called augmented e-constraint
method. The formulation of the augmented e-constraint method for our problem is shown below.
max TCðxÞ þ ðu� s2Þ
s:t: REðxÞ � s2 ¼ e2

x 2 S; s2 2 Rþ
ð42Þ
where u is an adequately small number (usually between 10�3 and 10�6) and augmented term u� s2 assures yielding just
efficient solution for each epsilon vector. This method is then used to solve the bi-objective LAM and UAM and finding effi-
cient solutions for our problem.
5.4. Differential evolution Algorithm

The proposed possibilistic scenario-based model is very complicated in many different aspects: (1) there are many
scenarios in the model, even after implementing the scenario reduction procedure, (2) the original decision model is non-
linear and solving it with exact methods is not an easy task (note that even linearization adds around twelve sets of new
constraints to the original mathematical model), and (3) the original model is of possibilistic type and converting it to an
equivalent parametric crisp model requires solving more mathematical models, which obviously increases the required
computation time. Therefore, according to the high complexity of the model, we use a meta-heuristic solution procedure
to solve the UAM and LAM more efficiently. Meta-heuristic algorithms are approximate methods used to solve large-scale
optimization problems in a reasonable time (Taillard et al., 2012). DE proposed by Storn and Price (1995) is a population
based Meta-heuristic algorithm which has attracted great attention in recent years due to its robustness and flexibility
for solving numerical optimization problems (Mallipeddi et al., 2011). Similar to other evolutionary algorithms such as
Genetic algorithm (GA), DE uses crossover, mutation and selection operators. In order to guide search process, DE uses
information of current population direction and distance between two individuals which is an important advantage of DE
in comparison with other evolutionary algorithms. The main steps of DE algorithm are generation of an initial population,
evaluation, mutation, crossover and selection. Like GAs, the operators are repeated until a predefined stopping criterion such
as maximum generation number is satisfied. The devised operators for our particular problem are briefly explained in the
following.



z1=rand (0,1)

z2=rand(0,1)

zL=rand(0,1)

z'1=rand (0,1)

z'2=rand(0,1)

z'L=rand(0,1)

y1=randi(0,u)

y2=randi(0,u)

yL=randi(0,u)

Fig. 5. The first matrix of solution representation.
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5.4.1. Initial population
Devising a suitable representation scheme showing the solution characteristics is one of the most important steps in

designing an evolutionary algorithm for a particular problem. The proposed model in section (4) has 4 scenario-based vari-
ables, 5 decision variables and 19 constraints. We devised different structures to find the most suitable structure to deal with
this number of variables and constraints. The selected structure consists of five different matrices and each matrix specifies
amount of specific variables. For example, the first matrix, as is shown in Fig. 5, specifies the amount of zi, z0i and yiu in which
rand (0, 1) is a random number generator within the range [0, 1] and randi (0, u) is a random integer number generator
within the range [0, u].

Of note is that, the devised structure deals with most of constraints. However, some constraints may not be satisfied in
the initial structure. To deal with these unsatisfied constraints, following methods are applied to ensure reaching to feasible
solutions:

� applying feasibility checks;
� using penalty functions in the fitness function.

5.4.2. Mutation
For each vector xi;G; i ¼ 1;2; . . . ;NP; a mutant vector can be generated as follows:
v i;Gþ1 ¼ xr1 ;G þ F 	 ðxr2 ;G � xr3 ;GÞ ð43Þ
where r1, r2 and r3 are randomly chosen integers so that r1 – r2 – r3 – i and r1; r2; r3 2 f1;2; . . . ;NPg. Also, F is a real and con-
stant factor between 0 and 2 which controls the amplification of the differential variation.
5.4.3. Crossover
In a DE algorithm, crossover operator mixes the parent vectors with the mutated vector in order to produce a new trial

vector. The trial vector yi;Gþ1 ¼ ðy1i;Gþ1; y2i;G; . . . ; yDi;Gþ1Þ can be defined as follow:
yji;Gþ1 ¼
v ji;Gþ1 if aj 6 CR or j ¼ bi

xji;G if aj > CR and j – bi
;

�
j ¼ 1;2; . . . ;D ð44Þ
where aj 2 ½0;1� is a random generated number for the jth element, CR 2 ½0;1� is the crossover constant which is set by the
decision maker and bi is randomly chosen index 2 f1;2; . . . ;Dg. Note that elements of the trial matrices may not be within
the range [0, 1]. Therefore, a feasibility check is designed so that each unfeasible element will be exchanged with a random
number within the range [0, 1].
5.4.4. Selection
Using the selection operator, each produced trial vector yi,G+1 is compared to its target vector xi,G. If yi,G+1 yields a better

function value than xi,G, then yi,G+1 becomes a member of G + 1 generation instead of xi,G; otherwise, the old value xi,G is
retained in the next generation.

In order to validate the proposed DE algorithm, we have compared its performance with the results obtained by the well-
known MIP solver (i.e. CPLEX solver) in Appendix C. The results show that the proposed DE can solve both the bi-objective
models of UAM and LAM using the augmented e-constraint method (presented in Section 5.3) with an acceptable
performance.
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6. Computational experiments

6.1. Numerical example

In this section, a numerical example and its computational results are presented to show the applicability and usefulness of
the proposed model for real applications. To this end, we consider a manufacturer who wants to buy three different items from
four available pre-qualified suppliers (S1, S2, S3 and S4). Twenty different disruptive events are considered for each supplier. It is
supposed that only supplier S4 has implemented a business continuity management plan and have suitable business continuity
plans to deal with disruptive events with two levels of fortification and two levels of recovery. Uniform distributions are used to
generate the required imprecise and crisp parameters which have been reported in Appendix D. Each imprecise parameter used
in this example has been modeled by an appropriate possibility distribution in the form of a symmetric triangular fuzzy number
with symmetrical spreads being equivalent to twenty percent of the central values.

The number of possible scenarios in the numerical example is equal to ð20þ 1Þ4. According to step 1 of the proposed solu-
tion method, fcm function in MATLAB R2012a is used to reduce the number of disruptive events in each supplier from twenty
to three. Related data to considered disruptive events in suppliers and calculated suppliers’ cluster centers as representatives
of disruptive events are respectively shown in Tables 3 and 4.

The first objective is considered as the most important objective and the second objective as a constraint in the augmented e-
constraint method. Considering clustering centers and e2 ¼ 240;000, Table 5 provides the corresponding results to LAM and
UAM models according to the different decision maker’s confidence levels (d; di ¼ d8i) in which the optimistic–pessimistic
parameter (k) and u are set respectively to 0.5 and 10�4. The DE algorithm was coded in MATLAB R2009a in a PC with Intel
Core i5 CPU, 2.53 GHz and 6 GB of RAM. Also, it was run 10 times for each d, and the best solution was reported.
Table 3
Characteristics of the considered disruptive events.

Disruptive event S1 S2 S3 S4

hie pie hie pie hie pie hie pie

1 0.384 0.041 0.452 0.042 0.297 0.025 0.563 0.041
2 0.480 0.023 0.254 0.039 0.535 0.012 0.163 0.038
3 0.322 0.004 0.593 0.016 0.157 0.004 0.567 0.023
4 0.053 0.027 0.151 0.032 0.489 0.003 0.405 0.017
5 0.343 0.046 0.119 0.040 0.517 0.017 0.322 0.046
6 0.377 0.009 0.396 0.027 0.492 0.047 0.057 0.040
7 0.321 0.035 0.600 0.003 0.419 0.041 0.088 0.048
8 0.576 0.040 0.361 0.046 0.254 0.037 0.202 0.020
9 0.532 0.008 0.517 0.013 0.369 0.036 0.547 0.004

10 0.496 0.010 0.547 0.014 0.206 0.044 0.093 0.019
11 0.339 0.019 0.439 0.030 0.251 0.025 0.535 0.039
12 0.090 0.047 0.250 0.022 0.263 0.007 0.370 0.041
13 0.229 0.023 0.238 0.014 0.373 0.046 0.147 0.020
14 0.514 0.040 0.148 0.041 0.178 0.016 0.388 0.008
15 0.522 0.032 0.274 0.009 0.184 0.004 0.496 0.025
16 0.030 0.036 0.578 0.033 0.144 0.037 0.293 0.000
17 0.228 0.020 0.568 0.040 0.085 0.005 0.454 0.009
18 0.290 0.030 0.515 0.039 0.386 0.033 0.175 0.043
19 0.061 0.048 0.491 0.034 0.238 0.022 0.352 0.007
20 0.3 0.038 0.040 0.021 0.202 0.038 0.168 0.046

Table 4
Characteristics of suppliers’ cluster centers as representatives of disruptive events.

Cluster centers S1 S2 S3 S4

hie pie hie pie hie pie hie pie

1 0.062 0.170 0.164 0.191 0.365 0.184 0.537 0.140
2 0.518 0.164 0.395 0.171 0.506 0.094 0.136 0.263
3 0.317 0.243 0.555 0.193 0.19 0.221 0.360 0.129

Table 5
Summary of results for LAM and UAM models according to different decision maker’s confidence levels.

d = 0.8 d = 0.9 d = 1.0

TC RE TC RE TC RE

LAM 472,695 0.789 418,110 0.791 344,127 0.899
UAM 276,741 0.919 310,504 0.914 344,370 0.902



Table 6
Results of sensitivity analysis on LAM parameters.

k di = 0.7 di = 0.8 di = 0.9 di = 1
[TC, RE] [TC, RE] [TC, RE] [TC, RE]

0 [459,674, 0.780] [417,056, 0.800] [355,785, 0.863] [311,714, 0.882]
0.2 [484,288, 0.780] [435,924, 0.789] [363,617, 0.876] [326,935, 0.891]
0.4 [487,512, 0.780] [457,190, 0.796] [392,522, 0.868] [338,764, 0.905]
0.6 [512,282, 0.786] [485,791, 0.805] [427,582, 0.860] [352,349, 0.899]
0.8 [546,896, 0.789] [491,381, 0.805] [430,405, 0.874] [370,635, 0.893]
1.0 [584,958, 0.782] [513,708, 0.790] [441,578, 0.869] [402,517, 0.866]
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As shown in Table 5, optimistic and pessimistic attitudes have significant impacts on results. In a fuzzy environment, pro-
viding a crisp (certain) solution to the decision makers is somehow unrealistic. Nevertheless, the important advantage of
using two proposed approximation models in the applied defuzzifying procedure is providing an interval for objective func-
tions according to the selected confidence levels (d). In this way, the decision makers can know the upper and lower bounds
of the optimal decision according to their favorite attitudes and confidence levels and thus more information is provided to
the decision maker (Xu and Zhou, 2013).

Different solutions can be found by changing the value of optimistic–pessimistic attitude and confidence levels. Table 6
shows the different optimal values for the objectives of LAM model with different k and d while considering e2 ¼ 240;000.

As can be seen in Table 6, because of using the LAM, the value of first objective (which is considered as the objective func-
tion of augmented e-constraint method) is improved by increasing the confidence levels while it is increased by increasing
the optimistic–pessimistic parameter.

As mentioned before, different solutions can be obtained by changing e2. The best and worst values of the second objec-
tive in LAM model with considering k ¼ 0:5, u ¼ 10�4 and d ¼ 1:0 are 65,701 and 109,731. Table 7 shows values of the objec-
tive functions of LAM efficient solutions for different l with considering k ¼ 0:5, u ¼ 10�4 and d ¼ 1:0. Also, the estimated
Pareto frontier obtained from Table 7 is shown in Fig. 6.
6.2. Managerial insights

Considering different likelihoods for disruptive events in suppliers may lead to different supply bases. To better under-
stand the impact of likelihoods on the fraction of total demand purchased from each supplier, we considered the numerical
example which is given in Section 6.2 and following five cases:

1. Without considering disruptive events.
2. Likelihoods of disruptive events are equal to 1/4 of the initial considered likelihoods (considered likelihoods in the

numerical example).
3. Likelihoods of disruptive events are equal to 1/2 of the initial considered likelihoods.
4. Likelihoods of disruptive events are equal to the initial considered likelihoods.
5. Likelihoods of disruptive events are equal to 1.2 of the initial considered likelihoods.

To this end, the fraction of total demand purchased from suppliers can be calculated from the following equation:
Ui ¼
P

k2K

P
s2S1

Ps xik þ q0iks

� �
þ
P

k2K

P
s2S2

Psx0iks þ
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s2SPsqiksP

i2V
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s2SPsqiks

h i 8i 2 V ð45Þ
where Ui is the fraction of total demand purchased from supplier i (i.e. purchasing share) and S1 and S2 denote the set of those
scenarios within which the supplier i respectively is not disrupted and disrupted.
Table 7
Efficient solutions of the LAM for different l.

l TC RE

0 344,127 0.899
1 352,974 0.903
2 369,917 0.907
3 378,022 0.911
4 387,893 0.915
5 394,110 0.919
6 401,671 0.923
7 433,887 0.928
8 441,703 0.932
9 457,531 0.936

10 478,145 0.940
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Fig. 6. The estimated Pareto frontier from LAM model.

Fig. 7. The purchasing shares of suppliers in the LAM model in considered cases.

Table 8
Amount of objective functions for the LAM in considered disruption cases.

Case TC RE

1 261,800 1.000
2 312,722 0.970
3 326,785 0.944
4 344,446 0.898
5 369,602 0.880
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Fig. 7 shows the purchasing shares of suppliers for the LAM with considering k ¼ 0:5, u ¼ 10�4, d ¼ 1:0 and e2 ¼ 160;000.
Also, amount of objective functions in each case are shown in Table 8.

Three main points can be extracted from Fig. 7 and Table 8:

1. Accounting for disruptive events can have a significant impact on the selected supply base. For example, as it is shown in
Fig. 7, supplier 1 has a great share in the first case (without considering disruptive events), but it does not have any con-
tribution among purchased items in other cases.

2. The purchasing shares of those suppliers with an implemented business continuity managements system are gradually
increased with increasing of likelihoods of disruptive events (there is a direct relation between the likelihood of disrup-
tive events and the fraction of total demand purchased from suppliers with an implemented business continuity manage-
ments system). For example, as it is shown in Fig. 7, the share of supplier 4 increases from case one to five as the
likelihoods of disruptive events increase.

3. The likelihoods of disruptive events have a significant impact on the selected supply base. For example, the purchasing
shares of suppliers (U1, U2, U3, U4) in the second case are (0, 0.53, 0.32, 0.16). However, in the fourth case these shares are
(0, 0.43, 0.39, 0.18).
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7. Conclusions and future work

In this paper, a novel scenario-based bi-objective possibilistic mixed integer linear model is developed to build resilient
supply bases for global supply chains in response to uncertainties and disruptions caused by operational and disruption
risks. The contributions of this paper to the literature are introducing a new supply side resilience objective function to cal-
culate the resilience level of the selected supply base and considering several strategies such as suppliers’ business continu-
ity plans, fortification of suppliers and contract with backup suppliers to enhance the resilience level of the supply network.
A five-step method is designed to solve the proposed model and computational experiments are provided to show the
applicability and usefulness of the proposed model for real applications. The computational experiments indicate that
accounting for disruptive events can have significant impact on selected supply bases. For example, a supplier may have
a great share in supply base without considering disruptive events and no share in the case of considering disruptive events.
Also, we find that likelihoods of disruptive events are key determinants in the selection of supply portfolio and there is a
direct relation between the likelihood of disruptive events and the fraction of total demand purchased from suppliers with
an implemented business continuity managements system. In this way, considering supply chain operational and disruption
risks simultaneously and demonstrating the significant impact of considering disruptive events as well as their likelihoods
on the selected supply base are other contributions of this paper.

In this paper, we assumed that disruptions occur independently and calculated the likelihood of scenarios accordingly.
However, in the real world, suppliers in close proximity to each other may be simultaneously affected after a disruptive
event like an earthquake. Also, geography is not the only factor that causes interdependence between disruptions.
Multiple suppliers may be related in some other ways; for example, they may share a common tier-II supplier. Therefore,
considering dependent disruptive events is an important possible direction for further research (e.g. see Li et al., 2013).
Accounting for multiple concurrent disruptions at suppliers under each scenario (Zobel and Khansa, 2014) and developing
new resilience functions for such situations is another research avenue. Extending the proposed model to multi-period hori-
zon case and defining a new resilience objective for this case, is another interesting possible direction for further research. In
this direction, since in some cases the disruption could last for multiple inventory cycles, a full recovery of disrupted sup-
pliers could be considered. Lastly, developing an efficient exact method to solve the model especially in large-size instances
can be a good direction for further research.
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Appendix A

Linearization process – As mentioned before, the third term of RE0 function is non-linear. With expanding this term we
would have:
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As it is obvious, x0iksRLl
ieis

and xikRLl
ieis

in the above term are non-linear. To linearize x0iksRLl
ieis

we can introduce two new con-
tinuous non-negative variables XPRLikls and XPRL1ikls, and the following constraints:
XPRLikls þ XPRL1ikls ¼ x0iks 8i 2 J \ Vs; k 2 K; l 2 Lieis
; s 2 S ðA-2Þ

XPRLikls 6 M 	 RLl
ieis
8i 2 J \ Vs; k 2 K; s 2 S ðA-3Þ

XPRL1ikls 6 Mð1� RLl
ieis
Þ 8i 2 J \ Vs; k 2 K; l 2 Lieis

; s 2 S ðA-4Þ

XPRLikls P 0; XPRL1ikls P 0 8i 2 J \ Vs; k 2 K; l 2 Lieis
; s 2 S ðA-5Þ
Similarly, to linearize xikRLl
ieis

we can introduce two new continuous non-negative variables XRLikls and XRL1ikls, and the
following constraints:
XRLikls þ XRL1ikls ¼ xik 8i 2 J \ Vs; k 2 K; l 2 Lieis
; s 2 S ðA-6Þ

XRLikls 6 M 	 RLl
ieis
8i 2 J \ Vs; k 2 K; l 2 Lieis

; s 2 S ðA-7Þ
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XRL1ikls 6 Mð1� RLl
ieis
Þ 8i 2 J \ Vs; k 2 K; l 2 Lieis

; s 2 S ðA-8Þ

XRLikls P 0; XRL1ikls P 0 8i 2 J \ Vs; k 2 K; l 2 Lieis
; s 2 S ðA-9Þ
Therefore, constraints (A-2)–(A-9) are added to the model and the linearization form of second objection function (RE) is
accordingly stated as follows:
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Also, the right side of constraint (9) is non-linear. We can expand this term as below:
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Therefore, constraints (A-12)–(A-15) are added to the model and the linearization form of constraint (9) is stated as
follows:
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Appendix B

The two crisp models of our proposed model using the Me measure can be rewritten as follows:
LAM model:
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+ other crisp constraints.

Appendix C

In order to validate the proposed DE algorithm, it is compared with CPLEX solver. To this end, twenty test problems in
different sizes were generated randomly. Table B1 shows the basic characteristics of the test problems. In this table, each
problem is specified by four components. The first component denotes the number of items, the second and third ones refer
to the number of suppliers and number of first group suppliers and the fourth component indicates the number of disruptive
events in each supplier. For example, 3 � 2 � 1 � 2 denotes a problem with 3 items, 2 suppliers, 1 first group supplier, and 2



Table B1
Basic characteristics of the test problems.

No. of test problem Problem specifications No. of scenarios No. of constraints No. of continuous variables No. of binary variables

1 2 � 3 � 2 � 2 27 1379 704 44
2 2 � 3 � 2 � 3 64 3699 1780 104
3 3 � 4 � 1 � 2 81 6737 3402 118
4 3 � 4 � 1 � 3 256 24,085 11,547 394
5 4 � 4 � 1 � 3 256 30,916 15,136 394
6 4 � 5 � 2 � 2 243 39,734 21,752 662
7 6 � 4 � 1 � 3 256 45,090 22,314 394
8 6 � 4 � 2 � 4 625 181,473 86,550 2,012
9 8 � 4 � 2 � 3 256 86,913 44,606 780

10 8 � 6 � 3 � 2 729 310,783 175,052 2934
11 10 � 4 � 2 � 4 625 296,449 141,574 2012
12 10 � 7 � 4 � 2 2187 1,444,341 832,652 11,686
13 12 � 5 � 3 � 3 1024 717,991 374,898 4624
14 12 � 6 � 4 � 2 729 549,397 317,014 3908
15 15 � 5 � 2 � 3 1024 689,357 355,705 3086
16 15 � 10 � 5 � 1 1024 968,707 624,897 5150
17 18 � 4 � 2 � 4 625 526,401 251,622 2012
18 18 � 10 � 5 � 1 1024 1,159,168 747,822 5150
19 20 � 6 � 3 � 2 729 753,247 428,852 2934
20 20 � 10 � 5 � 1 1024 1,286,142 829,772 5150

Table B2
Range of uniform distributions used to generate test problems’ parameters.

Parameter Range of uniform distribution Parameter Range of uniform distribution

dk [100, 400] LT0 i [5, 15] + LTi

Ai [400, 1000] pie [0.1, 0.4]
pik; i 2 I [5, 20] hie [0.2, 0.6]
pik; i 2 J ½1;3� þ pik; i 2 I bie1 [0.05, 0.1]

f i [700, 1200] bie2 0:05þ bie1

FRi1; i 2 J [200, 1000] RT1
ieis

[30, 40]
FRi2; i 2 J [300, 500] + FRi1 RT2

ieis
10þ RT1

ieis

hik; i 2 J [1, 3] CL1
ie 0.6

Cai [400, 1000] CL2
ie 0.8

uik [0.05, 0.15] aik [1, 2]
Rk [0.1, 0.2] bik [2, 3]
LTi [30, 50] n 2

Table B3
Comparative results for the first objective between CPLEX and the proposed DE algorithm.

No. of test problem CPLEX DE algorithm RD%

Result Best possible CPU time (s) Average Best result CPU time (s)

1 7200 7180 16 7591 7576 18 5.22
2 33,432 30,256 406 35,878 35,047 289 4.83
3 48,222 42,653 1019 52,128 51,025 434 5.81
4 22,545 20,647 6837 21,952 21,573 892 �2.63
5 47,016 42,048 5822 48,058 47,016 972 0
6 33,563 30,778 7483 36,489 34,199 1201 1.89
7 52,145 48,949 4237 57,449 54,874 1653 5.23
8 64,712 57,155 15,309 67,371 66,376 1732 2.57
9 60,388 56,869 9750 63,834 62,275 2084 3.12

10 99,340 96,943 12,931 105,709 101,613 2407 2.29
11 110,902 102,146 14,796 123,512 116,332 1967 4.90
12 NAa NA 36,000 137,020 128,682 3833 _
13 184,948 166,406 21,362 177,191 169,973 2571 2.14
14 124,985 117,324 36,000 133,168 131,662 3008 5.34
15 270,926 250,476 17,240 277,672 275,084 3479 1.53
16 195,301 101,756 36,000 209,884 201,713 4962 �3.29
17 188,940 175,807 12,043 202,987 197,191 3201 4.37
18 201,865 129,565 36,000 191,873 186,679 5099 �0.75
19 152,769 136,523 27,183 161,694 157,387 4147 3.02
20 169,507 95,146 36,000 159,456 152,381 5317 �1.01

a Solution is not achieved in 10 h.
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disruptive events in each supplier. Also, number of scenarios, constraints, continuous and binary variables for each test
problem is shown in Table B1. Other test problems parameters are generated randomly based on uniform distributions
which are reported in Table B2. Notably, all parameters of the test problems in the validation phase were considered as crisp
(i.e. deterministic) data. Also, the T⁄ in each test problem is considered bigger than the biggest lead time plus the biggest
recovery time. The DE algorithm was coded in MATLAB R2009a and CPLEX 10.0 solver in General Algebraic Modeling
System (GAMS) was used to solve the test problems in a PC with Intel Core i5 CPU, 2.53 GHz and 6 GB of RAM.
Furthermore, linearization process and transforming the original possibilistic model to its crisp counterpart were discussed
in the paper. CPLEX solver was used to solve the linearized model and crisp counterpart to optimality while the designed
meta-heuristic solves the non-linear crisp counterpart directly.

For a better comparison, the proposed DE algorithm was initially run with the aim of minimizing the first and second
objectives and then it was run with the aim of minimizing augmented e-constraint method’s objective for the fifth, tenth,
fifteenth and twentieth test problems. Tables B2–B5 show the comparative results between CPLEX and the proposed DE
Table B4
Comparative results for the second objective between CPLEX and the proposed DE algorithm.

No. of test problem CPLEX DE algorithm RD%

Result Best possible CPU time (s) Average Best result CPU time (s)

1 0.734 0.797 132 0.734 0.734 16 0.00
2 0.383 0.467 853 0.350 0.357 342 6.79
3 0.667 0.697 1482 0.646 0.654 381 1.95
4 0.373 0.406 5439 0.366 0.383 853 �2.68
5 0.380 0.465 4651 0.363 0.380 1143 0.00
6 0.743 0.773 9564 0.728 0.733 1591 1.35
7 0.654 0.669 5204 0.632 0.647 1949 1.07
8 0.639 0.687 13,365 0.604 0.618 2074 3.29
9 0.730 0.757 12,994 0.701 0.713 2504 2.33

10 0.871 0.896 14,594 0.857 0.863 2662 0.92
11 0.466 0.595 13,869 0.361 0.431 2094 7.51
12 0.714 0.893 36,000 0.845 0.847 4256 �18.63
13 0.921 0.935 19,840 0.837 0.857 2608 6.95
14 0.887 0.907 28,122 0.877 0.883 3734 0.45
15 0.611 0.681 20,294 0.577 0.611 3629 0.00
16 0.944 0.966 36,000 0.944 0.949 4438 �0.53
17 0.535 0.914 36,000 0.806 0.839 4182 �56.82
18 0.710 0.842 36,000 0.805 0.806 5724 �13.52
19 NAa NA 36,000 0.772 0.776 4810 –
20 0.777 0.899 36,000 0.799 0.804 5471 �3.47

a Solution is not achieved in 10 h.

Table B5
Comparative results for the augmented e-constraint method’s objective between CPLEX and the proposed method.

No. of test problem l CPLEX DE algorithm RD%

Result Best possible CPU time (s) Average Best result CPU time (s)

5 0 47,016 42,048 6158 48,053 47,016 1037 0
1 54,752 50,636 7721 56,361 55,281 1151 0.97
2 62,347 55,290 9336 65,026 64,952 1294 4.18
3 67,134 61,810 10,974 79,966 68,104 1614 1.44
4 71,076 65,787 17,096 75,903 74,603 2577 4.96

10 0 99,339 96,941 12,995 105,712 101,613 2653 2.29
1 107,187 99,447 15,761 109,258 111,063 2712 3.62
2 112,139 103,109 15,258 114,852 116,936 3651 4.28
3 118,113 101,696 17,158 122,039 123,260 4775 4.36
4 121,501 114,402 21,963 126,393 128,102 4818 5.43

15 0 270,926 261,903 19,361 277,643 275,084 3640 1.53
1 273,338 265,985 20,281 287,693 286,511 3872 4.82
2 281,966 271,086 22,988 295,959 293,523 4962 4.10
3 289,897 273,890 27,948 317,590 308,305 5614 6.35
4 387,639 191,935 36,000 327,438 324,598 6879 �1.62

20 0 173,139 95,146 36,000 160,995 157,935 6440 �8.78
1 190,757 875,426 36,000 169,704 161,571 6753 �15.30
2 NAa NA 36,000 173,392 171,249 6524 _
3 NA NA 36,000 185,224 179,746 6702 _
4 NA NA 36,000 194,980 190,575 6336 _

a Solution is not achieved in 10 h.
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algorithm for the first, second and e-constraint model’s objectives, respectively. The DE algorithm has been run ten times for
each test problem, and the best and the average of the obtained solutions have been reported. In the augmented e-constraint
method, we consider the first objective as the most important objective and the second objective is added to constraints.

The comparison was performed by defining the relative deviation (RD) of the proposed DE’s solution from the CPLEX solu-
tion. In Tables B3 and B5, the RD is defined as:
RD ¼ proposed DE’s best result� CPLEX result
CPLEX result
To calculate RD in Table B4, the above formula is multiplied to a minus.
In Tables B3 and B5, the solutions and CPU times for each problem are compared for proposed DE algorithm and the

CPLEX which is operated in GAMS. The results show that the relative deviation of the results of the proposed DE from the
CPLEX solution is less than 0.08 in all test problems. In some cases, the DE algorithm gets the CPLEX solution or even pro-
duces better solution. Also, in the most cases, CPU time of the DE algorithm is less than that of the CPLEX and the proposed
DE algorithm is much faster than CPLEX.

Appendix D

This appendix shows uniform distributions used to generate the required imprecise and crisp parameters in Section 6.2.
The uniform distributions used to generate the center of symmetric fuzzy parameters
Parameter Respective uniform distribution
~dk 5000 � Ui[1,5]eAi 100� Ui½5;10�
~pik; i 2 I Ui½5;10�
~pik; i 2 J Ui½11;15�
~p0ik fpik þ 10
~f i 1000� Ui½5;10�
FeRi1 2000� Ui½5;10�
FeRi2 FRm

i1 þ 5000
~hik Ui½1;3�
The uniform distributions used to generate crisp parameters
Parameter Respective uniform distribution

LTi; i 2 I 10� Ui½6;7�
LTi; i 2 J 10� Ui½4;5�
LT0i LTi þ 10
pie U½0:01;0:05�
hie U½0; 0:6�
aik Ui½1;3�
Cai d

P
k2K aikð1:7dm

k Þ � U½0:7;1:3�e
Sci Cai

bik Ui½1;3�
bie1 U½0:05;0:1�
bie2 bie1 þ 0:05
RT1

ieis
10� Ui½2;3�

RT2
ieis

RT1
ieis
þ 10

T⁄ 120
CL1

ie 0.8
CL2

ie 1
n 3
where Ui[a, b] is a random integer number generator within the range [a, b] and U[a, b] is a operator that chooses a random
number within the range [a, b].
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