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The classic multiple-criteria decisionmaking (MCDM)model assumes that, when taking a decision, the decision
maker has defined a fixed set of criteria and is presentedwith a clear picture of all available alternatives. The task
then reduces to computing the score of each alternative, thus producing a ranking, and choosing the one that
maximizes this value.
However, most real-world decisions take place in a dynamic environment, where the final decision is only taken
at the end of some exploratory process. Exploration of the problem is often beneficial, in that it may unveil
previously unconsidered alternatives or criteria, as well as render some of them unnecessary.
In this paper we introduce a flexible framework for dynamic MCDM, based on the classic model, that can be
applied to any dynamic decision process andwhich is illustrated bymeans of a small helicopter landing example.
In addition, we outline a number of possible applications in very diverse fields, to highlight its versatility.
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1. Introduction

Most real-world decision problems are dynamic, in the sense that
the final decision is taken only at the end of some exploratory process,
during which both alternatives and criteria may vary, as the examples
of Section 6.1 testify.

However, the classic multiple-criteria decision making (MCDM)
model is unable to capture this dynamicity, since it assumes that,
before proceeding with the ranking, the decision maker must have
identifiedfixed sets of criteria and alternatives.While, in principle, this
model could be used in a dynamic setting by considering subsequent
decisions to be completely independent one from the other, doing so
would constitute a gross oversimplification of the way humans think
about the fine interlinking that exists among decisions in a dynamic
environment, in which earlier evaluations affect later ones.

The framework we propose in this paper aims to address this
problem by extending the classic MCDM model in a flexible way that
enables its use in very diverse fields requiring some form of dynamic
decision making.

The rest of this paper is organized as follows. In Section 2, we
briefly review the classicMCDMmodel and present the general theory
our framework is set in. Subsequently, in Section 3, we delve into
the crucial issue of choosing an appropriate aggregation function for
this model, and present some well-known examples from the recent
literature. We then give, in Section 4, a general overview of related
work, before going into the details of our proposed framework in
Section 5. To better illustrate our proposal, we make use of a numerical
example (Section 6) and present a number of possible applications
(Section 6.1).

2. Classic MCDM model

The classicmultiple-criteria decisionmaking (MCDM)model [18,42]
prescribes ways of evaluating, prioritizing and selecting the most fa-
vorable alternative from a set of available ones that are characterized by
multiple, usually conflicting, levels of achievement for a set of attributes.
The final decision is made by considering both inter-attribute and intra-
attribute comparisons, possibly involving trade-off mechanisms.

Mathematically, a typical MCDM problem with m alternatives and
n criteria is modeled by the matrix

where xij∈ [0, 1] represents the level of achievement of alternative
ai, i=1,…,mwith respect to criterion cj, j=1,…, n, with 0 interpreted
as “no satisfaction” and 1 corresponding to “complete satisfaction”. It
is also common to introduce a weight vector w∈ [0, 1]n, ∑j=1

n wj=1
whose generic component wj, j=1, …, n is the weight associated to
criterion cj representing its relative importance.
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Evaluation of alternatives is performed bymeans of an aggregation
function f : [0, 1]n→ [0, 1], which maps vectors of criteria values xi,
i=1, …, m to the [0, 1] interval and satisfies, for all x, y∈ [0, 1]n,

f f ð0;0;…;0Þ
︸n times

= 0

f ð1;1;…;1Þ
︸n times

= 1
preservation of boundsð Þ;

x≤ y⇒ f xð Þ≤ f yð Þ monotonicityð Þ:

The resulting value is considered a score indicating how preferable
the associated alternative is, with the common understanding that
0 corresponds to “no preference” and 1 to “strongest preference”.
Given these scores, alternatives may then be ordered, thus producing
a ranking, and the best one might be selected.

It is clear that the aggregation function chosen for distilling criteria
values into a single score plays a crucial role in this model, which in
turn means that its mathematical properties need to be better
categorized and understood. For this reason, in the following section
we will present some of the more commonly used aggregation
functions, highlighting interesting properties and providing pointers
to existing literature for the interested reader.

3. Aggregation functions

As we have seen in the previous section, the key component of
the classic MCDM model is the aggregation function used to associate a
single score to each alternative by distilling the different evaluations (one
for each criterion). It is thus easy to understand that the mathematical
properties of this function will have a direct impact on the produced
values and, therefore, on the final ranking of alternatives.

In the rest of this section we will present well-known aggregation
functions, highlighting interesting properties such as full or partial
reinforcement [42], which might prove useful in the decision process.

For more information on the broad field of aggregation functions,
as well as for identifying a set of general guidelines to help select one,
the interested reader should refer to [40,2,10,44,7,33,3]; our exposi-
tion will broadly follow [3].

3.1. Averaging aggregation functions

Averaging aggregation functions are probably the most commonly
used aggregation functions. An aggregation function f is averaging if,
for every x, min xð Þ≤ f xð Þ≤max xð Þ:

A wide and well-known class of averaging aggregation functions
is that of means, which includes the arithmetic, quasi-arithmetic,
geometric, harmonic and power means, as well as their weighted
counterparts. Another family of averaging aggregation functions,
introduced by Yager [39] and especially popular in the fuzzy sets
community, is that of Ordered Weighted Averaging functions (OWA),
which associate weights to values rather than particular inputs.

When criteria cannot be considered preferentially independent, as
is often the case, a natural choice for the aggregation function is the
discrete Choquet integral [15–17], which is able to model the
importance of single criteria as well as of subsets of criteria.
Underlying the Choquet integral is a monotonic set function, called
capacity [9], that plays a role similar to that of a weight vector in
traditional weighted arithmetic means.

Another interesting approach that should be mentioned is that of
mixture operators [26,24], which extend weighted averaging opera-
tors by considering weighting functions defined on the aggregation
domain instead of constant weights. Depending on the type
of weighting function used, one can for example penalize poorly
satisfied attributes, and reward well-satisfied ones. Two kinds of
functions have been considered in this context, namely linear and
quadratic weight generating functions [25,27].

Note, however, that these aggregation functions are in general not
associative, and will thus not be the subject of further discussion in
this review as they are not suited for the progressive aggregation
process introduced later in this work.
3.2. Conjunctive aggregation functions

As their name implies, conjunctive aggregation functions are used
to model conjunction, i.e. the logical and. They do not allow for
compensation of low scores by other, higher scores, as it is the case, for
example, of obtaining a driving license, for which one has to pass both
the theory and the driving tests.

Therefore, their output is bound from above by the smallest input
value, that is, for every x, f xð Þ≤min xð Þ:
3.2.1. Triangular norms
The prototypical example of a conjunctive aggregation function is

the so-called triangular norm, or t-norm. It was first introduced by
Menger [20] as an operation for the fusion of distribution functions on
statisticalmetric spaces, and its current definition, due to Schweizer and
Sklar [32], requires associativity, symmetry and neutral element 1.

Four basic examples of t-norms are the minimum, the product,
the Łukasiewicz t-norm and the drastic product [3]. The weakest
and the strongest t-norms are the drastic product and the minimum,
respectively; for every x and every t-norm T, it holds that
TD xð Þ≤ T xð Þ≤ Tmin xð Þ:
3.2.2. Parametric t-norms
Many families of related t-norms are defined by explicit formulas

dependingon someparameter. Themain families of parametric t-norms
are Hamacher's [44], Yager's [38] and Sugeno–Weber's [35], some of
which include the basic t-norms as limiting cases.
3.3. Disjunctive aggregation functions

Disjunctive aggregation functions behave the opposite of conjunc-
tive ones, in that satisfaction of any criteria is enough by itself, although
positive inputs may reinforce one another. As their name implies, they
are used to model disjunction, i.e. the logical or.

Therefore, their output is bound from below by the largest input
value, that is, for every x, f xð Þ≥ max xð Þ:
3.3.1. Triangular conorms
The dual aggregation function of a triangular norm is called a

triangular conorm, or t-conorm. The current definition, again due to
Schweizer and Sklar [32], requires associativity, symmetry and neutral
element 0.

Four basic examples of t-conorms are the maximum, the prob-
abilistic sum, the Łukasiewicz t-conorm and the drastic sum [3].
The weakest and the strongest t-conorms are the maximum and the
drastic sum, respectively; for every x and every t-conorm S, it holds
that Smax xð Þ≤ S xð Þ≤ SD xð Þ:
3.3.2. Parametric t-conorms
As for t-norms, many families of related t-conorms are defined by

explicit formulas depending on some parameter. The main families of
parametric t-conorms are again Hamacher's [44], Yager's [38] and
Sugeno–Weber's [35], some of which include the basic t-conorms as
limiting cases.
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3.4. Mixed aggregation functions

An aggregation function f is mixed if it does not belong to any of
the classes hitherto presented, i.e. if it behaves differently on different
parts of its domain. This kind of aggregation functions allow better
modulation of the response; for example, in our context it might be
especially useful to consider a positive (or upward) reinforcement
behavior for high input values, a negative (or downward) reinforce-
ment behavior for low ones, and perhaps an averaging behavior if
some values are high and some are low.

Uninorms and nullnorms are two popular families of associative
mixed aggregation functions built from triangular norms and conorms.
A different approach, still close to t-norms and t-conorms, is adopted in
the construction of compensatory T-S functionswhich, however, are not
associative.

3.4.1. Uninorms
Uninorms [41,13] have conjunctive behavior when presented

with low input values (below a given neutral element e ∈] 0, 1[),
disjunctive behavior for high input values (above e) and averaging
otherwise (Fig. 1a). The two extremal uninorms are shown in Fig. 2.

Any uninorm Uwith neutral element e is associated with a t-norm
TU and a t-conorm SU (usually referred to as the underlying t-norm
and t-conorm) such that

U x; yð Þ =
e TU

x
e
;
y
e

� �
x; yð Þ∈ 0; e½ �2

e + 1−eð Þ SU
x−e
1−e

;
y−e
1−e

� �
x; yð Þ∈ e;1½ �2

:

8><
>:

Contrary to what happens in these two squares, the behavior of
uninorms in the rest of the unit square is not bound to any specific
class of (averaging) functions, which in turn led to the identification
and characterization of several classes of uninorms.

3.4.2. FIMICA
FIMICA functions [42] are an interesting class of aggregation

functions, derived from MICA functions [40], which exhibit full re-
0

1

0 1

1

disjuncti ve averaging

averaging conjunctive

a b

Fig. 1. Behavior of uninorms and nullnorms on the [0, 1] interval: uninorms are conjunctive in
opposite way.
inforcement and are thus well suited to the problem at hand. There
exist two families of FIMICA functions, additive and multiplicative.

Given a fixed identity element g∈ [0, 1] and a monotonic mapping
f :ℝ→ [0, 1], x≥y⇒ f(x)≥ f(y), the family of additive FIMICA functions
is defined as

M xð Þ = f ∑
n

i=1
xi−gð Þ

� �
:

Note that the additive family of FIMICA functions is, in general, not
associative, though the argument of f is.

The family of multiplicative FIMICA functions is instead defined as

M xð Þ = f ∏
n

i=1

xi
g

� �
;

where gN0 is the fixed identity element and f is as before. An example
of a multiplicative FIMICA function is shown in Fig. 3.

It can be shown [42] that uninorms are FIMICA functions with two
special properties:

1. idempotency: M(x)=x;
2. associativity.

However, FIMICA functions allow for a finer control of their
response through the choice of an appropriate function f, making
it possible, for example, to avoid undesired asymptotic behaviors
(small changes in the argument resulting in huge differences in the
aggregated value).

3.4.3. Nullnorms
Nullnorms are disjunctive for low input values (below a given

absorbing element a∈] 0, 1[), conjunctive for high input values (above a)
and averaging otherwise (Fig. 1b). The two extremal nullnorms are
shown in Fig. 4.
1

conjunctive averaging

averaging disjuncti ve

the lower left rectangle and disjunctive in the upper right one; nullnorms behave in the



0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

a) Weakest uninorm b) Strongest uninorm

Fig. 2. Extremal uninorms: the weakest uninorm equals 0 in the lower left quadrant, max in the upper right one and min elsewhere; the strongest uninorm equals min in the lower
left quadrant, 1 in the upper right one and max elsewhere.
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Similarly to uninorms, nullnorms are averaging when dealing with
mixed inputs, but their behavior in such cases is limited to a single
value which coincides with the absorbing element a.

As for uninorms, any nullnorm V with absorbing element a is
associated with a t-norm TV and a t-conorm SV such that

V x; yð Þ =

a SV
x
a
;
y
a

� �
x; yð Þ∈ 0; a½ �2

a + 1−að Þ TV
x−a
1−a

;
y−a
1−a

� �
x; yð Þ∈ a;1½ �2

a otherwise

:

8>>>><
>>>>:

Therefore, similarly to uninorms, each nullnorm univocally defines
a t-norm and a t-conorm. The converse (which is false in the case of
uninorms), is true for nullnorms, that is, given an arbitrary t-norm, an
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Fig. 3. Example of multiplicative FIMICA function using the function f(x)=1−1/(1+x)
and the identity element g=0.25.
arbitrary t-conorm and an element a ∈] 0, 1[ there exists a unique
associated nullnorm.
4. Overview of related work in dynamic MCDM

Having introduced the classic MCDM model as well as reviewed
the most relevant aggregation functions, and before we move to our
proposed extension, it is beneficial to give a brief overview of the
current state of the art in the field of dynamic decision making, to
allow a better understanding of where our framework finds its place.

The problem of making decisions in a dynamic environment
has been the object of study in many different fields, but has
received special consideration in psychology and cognitive science
[4,34,12,5,14,36,37].

In the area of decision support and decision making, however, the
problem is only starting to receive attention. A recently published
work tries to integrate MCDM with the findings of several different
fields, such as neural science, psychology and optimization theory
[43], but does not propose a mathematical framework as we do in this
work. Two other important developments are extensions to classic
models [31,19], namely to the well-known Analytic Hierarchy Process
(AHP) [29,30] and to the Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) [18]. A similar tool, also based on AHP, is
presented in [1], and incorporates user-specified probabilistic in-
teractions between factors in the AHP hierarchy. A related problem,
which was the object of the pioneering research of [21,22], is that of
decision making with less than perfect information: in this case, it is
often possible to acquire additional information at some cost, so that
optimal information-gathering strategies, as well as optimal final
decision strategies, are required. These issues continue to interest the
decision making community, as attested by the recent paper by [8], in
which the authors propose a framework that allows decision makers
to provide incomplete preference values at multiple times.

A broad, interdisciplinary overview of tools that have been
proposed in the past, such as expected and multi-attribute utility
analyses, game theory, Bayesian approaches, decision trees and
influence diagrams, stochastic optimal control theory, Markov
decision processes, neural networks and rule-based cognitive archi-
tectures, can be found in [6].
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Finally, it is crucial to understand that, although similar, our model
is not aimed at solving consensus problems, since we consider a single
decision maker taking multiple decisions over time, whereas
consensus models deal with multiple decision makers reaching a
common decision, nor is it related to optimal control systems, since
our focus is not on process automation, but rather on supporting the
decision making process.
5. Dynamic MCDM model

Given a (possibly infinite) set of positive time instants T ={1, 2,…},
letAt denote the set of alternatives available at time t∈T ,Ct:At→ [0, 1]n

the function mapping each alternative to the corresponding vector
of values for the n criteria over which alternatives are evaluated,
and wt∈ [0, 1]n, ∑w∈wt w = 1;∀t∈T a weight vector for expressing
criteria's relative importance. The set notation we have just introduced
is used instead of the more common matrix notation presented in
Section 2 because of the dynamicity of the problem, which makes it
impossible to associate fixed positions to elements of a constantly
changing set of alternatives.

The rating at each time t∈T , denoted Rt:At→ [0, 1], is defined by
the enclosed classic decision model based on Ct and (possibly) wt ,
and represents the (non-dynamic) aggregation of all criteria values,
possibly taking into account their relative importance, for each avail-
able alternative.

The dynamic nature of the decision process is dealt with by means
of a feedbackmechanism, controlled by a second aggregation function
ξ that makes use of a historical set of alternatives — its “memory”.

The historical set of alternatives is defined as

H0 = t and Htp ∪
t′∈ T
t′≤ t

A
t′ ; t∈ T : ð1Þ

Note that, in practical applications, it will be necessary to define
the subset of alternatives to be included in the historical set and
carried over to the next iteration by means of a selection rule, here
called “retention policy”. This issue is discussed in more detail in
Section 5.1.
Finally, the evaluation function Et:At ∪Ht−1→ [0, 1], t∈T is
defined as

Et að Þ =
Rt að Þ a∈At 5 Ht−1
DE Et−1 að Þ;Rt að Þð Þ a∈At ∩Ht−1
Et−1 að Þ a∈Ht−15 At

;

8<
: ð2Þ

where DE is some aggregation function.
For each alternative a∈At ∪Ht−1, either belonging to the current

set of alternatives At or carried over from the previous one bymeans of
the historical set Ht−1, we have that:

1. if the alternative a belongs only to the current set of alternatives,
but not to the historical set Ht−1, its evaluation Et(a) is simply
equal to its rating Rt(a) as computed by means of the enclosed
MCDM model;

2. if the alternative a belongs to both the current and the historical
set of alternatives, a∈At∩Ht−1, its evaluation is the aggregation
(performed by the aggregation function DE) of its evaluation in
the previous iteration with its rating in the current one, again
computed using the enclosed MCDM model;

3. finally, if the alternative a does not belong to the current set of
alternatives At , but was carried over in the historical set Ht−1, its
evaluation is also carried over from the previous iteration, Et(a)=
Et−1(a).

Fig. 5 depicts a diagram outlining the important steps in the
proposed dynamic multiple-criteria decision making process.

To ensure that repeated pairwise application of the aggregation
function DE : 0;1½ �2→ 0;1½ � will yield, at time t, the same result as
application over the whole set of past values Et′, t′∈{1, …, t}, we
require it to be associative, i.e.

DE DE x; yð Þ; zð Þ = DE x;DE y; zð Þð Þ;∀x; y; z∈ 0;1½ �:

This condition also allows us to perform this computation in-
crementally, without the need to store all past values.

Apart from this requirement, the choice of the aggregation
function used in the dynamic part of the framework is completely
independent from that of the function used to score alternatives in
the non-dynamic part. As a consequence, any suitable aggregation



Fig. 5. Operations performed at each iteration t in the proposed dynamic framework: first, available alternatives and considered criteria are aggregated into utilities; then, by making
use of the information stored in the historical set, a final ranking is produced; finally, the information in the historical set is updated and passed on to the next iteration. This process is
repeated until the stopping criterion is met.
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function, such as those presented in Section 3, can be used for DE;
nonetheless, a property which we have found to be particularly
relevant in this context is that of reinforcement.

5.1. Retention policy for the historical set

Another important constituent of our dynamic model is the his-
torical set, whose function is to “remember” alternatives by carrying
them over from iteration to iteration. As such, it is crucial to define
a retention policy, i.e. a criterion for selecting a subset of past and
current alternatives to be carried over.

We consider here three possibilities:

• accumulate alternatives, so that strict equality holds in (1);
• select the k alternatives which rank higher than all others;
• select all alternatives whose evaluation surpasses some threshold.

The first solution, while providing perfect “memory” of all past
alternatives, is practically unimplementable in most situations, when
we are faced with large (possibly infinite) sets of alternatives.

On the other hand, the second solution ensures that the cardinality
of Ht will never exceed k, but might potentially discard reasonable
alternatives beyond the first k.

A good compromise is achieved by the third solution; note that the
thresholdmight be fixed based on all current evaluations, for example
by considering an appropriate quantile.

An additional strategy that might be used alongside is to drop
alternatives that have not been available for a predefined number of
iterations, effectively “forgetting” about them.

Finally, we observe that, if Ht ≡ , ∀ t∈T, our framework reduces to
applying the enclosed MCDM model independently at each instant t.

5.2. Stopping criterion

The dynamic decision process may or may not have an end, i.e. a
final decision moment after which no further support is needed.

For example, in the case of the emergency department operation
scheme described in Section 6.1, it is unclear if such an endpoint can
be marked as patients come and leave; on the other hand, the
examples of medical diagnosis and planetary landing site selection do
have such an endpoint: for the former, it would be determined by the
doctor using the system, while for the latter it is imposed by the very
nature of the decision being made.

Therefore, the issue of identifying a suitable stopping criterion,
if any, depends on the specific problem being solved: in some
situations it will not be needed, in others it will be imposed
exogenously (as is the case in planetary landing), or met only when
the decision maker feels confident enough to declare the decision
process over.
6. Numerical example: helicopter landing

To better illustrate our model, let us introduce a simple numerical
example in which a decision maker has to pick a site for landing an
helicopter from among a set of nine possible choices.

We shall consider the following criteria:

Effort the effort required to change route towards the site (for
example, an estimate of the required amount of fuel).
Roughness the (estimated) roughness of the terrain.
Slope the (estimated) slope of the terrain.
Sunlight the (estimated) availability of sunlight at the site.

For the sake of simplicity, we will consider criteria values to be
already normalized, and aggregate them using a weighted average
with weight vector

w =

Effort Roughness Slope Sunlight

0.1 0.2 0.3 0.4 .

Clearly, any other aggregation function may be used, as long as it is
able to rank alternatives on a numeric scale.

As for the aggregation function of the dynamic part, we will use
a simple probabilistic sum (hence, a t-conorm exhibiting upward
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reinforcement); finally, the historical set will be used to carry over the
best k=3 alternatives.

6.1. First iteration

We consider an initial set containing only the first eight alter-
natives, A1={a1, a2, a3, a4, a5, a6, a7, a8}, with the rationale that
alternative a9 was vetoed by some criteria. The criteria values and
corresponding utilities are as follows:
In the first iteration all evaluations and utilities correspond, since
there is no historical information available; so, for example, the first
aggregated value is computed as

R1 a1ð Þ = wTC1 a1ð Þ
= 0:1 × 0:2 + 0:2 × 0:7 + 0:3 × 0:5 + 0:4 × 0:7
= 0:59:

Therefore, the initial order O1 is a1≺a3≺a5≺a2≺a7≺a6≺a8≺a4
and the alternatives carried over to the next iteration are the best
k=3, H1={a1, a3, a5}.

6.2. Second iteration

In the second iteration we consider a set with seven alternatives
A2={a3, a4, a5, a6, a7, a8, a9}, obtained by:

• removing alternatives a1 and a2 fromA1 (for example, because they
were vetoed; note that the fact that an alternative was included in
the historical set at the end of a previous iteration does not imply its
availability in the next one);

• considering a modified alternative a3 with different values for the
last two criteria;

• taking into consideration alternative a9.

The criteria values for each alternative and the corresponding
utilities are:
In the case of a3 and a5, a further step is required to determine the
corresponding evaluation, namely the aggregation with the historical
value. As an example, for a3 we have

E2 a3ð Þ = E1 a3ð Þ + R2 a3ð Þ−E1 a3ð Þ R2 a3ð Þ
= 0:56 + 0:39−0:56 × 0:39
= 0:73:

Therefore, at the end of the second iteration the evaluations are:

and the associated ranking O2 is a5≺a3≺a9≺a7≺a6≺a8≺a4 with
H2={a3, a5, a9}. Note that, while not considered for decision
purposes, the value associated to a1, one of the alternatives that
have gone missing from the previous iteration, is retained since it was
present in the historical set.

6.3. Third iteration

In the third and final iteration we consider a set with five
alternatives A3={a2, a6, a7, a8, a9}, obtained by:

• removing alternative a3, a4 and a5 from A2;
• considering a modified alternative a9 with different values for the
first two criteria;

• adding back alternative a2 with different values for the second and
third criteria.

The criteria values for each alternative and the corresponding
utilities are:

Therefore, at the end of the third iteration the evaluations are:

and the associated ranking O3 is a9≺a2≺a7≺a6≺a8.
Note again that the values associated to a3 and a5, two of the

alternatives that have gone missing from the previous iteration,
would be retained for use in the next iteration since theywere present
in the historical set.

6.4. Discussion of results

The best ranked alternative available in the last iteration is a9, and
this represents the final decision since the decision process necessar-
ily stops after landing. If at all possible, however, the decision maker
might in fact opt to wait another iteration before committing to some
decision.

At any rate, it is clear that our model is able to guide and support
the decisionmaker as the decision process evolves over time, and thus
offers added value over usage of the enclosed MCDM model in a non-
dynamic fashion.
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7. Potential applications

To illustrate the applicability of our model, we present in this
section a number of very diverse contexts it could find use in. We are
confident that, with due modifications, the model could be applied in
even more situations, and are looking forward to further develop-
ments in this area.

7.1. Emergency department operation

As patients arrive at an emergency department, it is necessary to
prioritize their cases based on clinical need and available resources, a
process known as triage.

In this context, patients to be treatedwith higher prioritywould rank
higher, with evaluations being computed from a set of criteria
describing the severity of the case. Every time a new patient could
be treated, the health professional would be able to quickly select
the onewhowould benefit themost, removing it from the queue, while
new patients would arrive, thus making the decision process dynamic.
As we saw, our model is perfectly suited to deal with this kind of
process, and is able to provide the needed ranking of patients at each
iteration.

In a similar way, our model could also be used to effectively
administer transplant waiting lists, or any other kind of prioritized
queue, as it has been proven in a preliminary computer simulation.

A possible parametrization for this problemwould be the following:

Alternatives all waiting patients.
Criteria body temperature, blood pressure, presence of bruises,
burns, fractures, etc.
Retention policy keep all patients that have not been treatedyet.

7.2. Medical diagnosis

A typical diagnostic process starts by gathering information directly
from the patient and through physical examination in order to for-
mulate a hypothesis of likely diseases, which will later be confirmed
through further medical testing before providing treatment.

This process can be easily seen as a multiple-criteria decision
making problem, in which possible diseases represent alternatives,
and signs, symptoms and test results constitute the set of criteria.

Note that, in this case, both alternatives and criteria may change in
time: the former because the diagnostician might consider diseases
that lookmore likely given the available data, as well as discard others
that fell below some likelihood threshold; the latter due to the fact
that, as time passes, new test results will be available based on
previous choices.

As such, we believe that our model is well suited to this area, and
could be used both to guide the diagnosis, by indicating at each time
which diseases are most probable, thus allowing the diagnostician to
arrange appropriate tests to confirm or discredit the hypothesis, and
to arrive at a solid final decision.

A possible parametrization for this problem would be the
following:

Alternatives diseases under consideration.
Criteria clinical tests performed.
Retention policy keep all likely diseases, getting rid of those that

are deemed too unlikely by the decision maker.
7.3. Planetary landing site selection

One of the most challenging research directions in space
exploration is the development of autonomous hazard avoidance
systems that would allow safe landing on dangerous or insufficiently
characterized areas on distant planets, for which manual piloting is
not an option due to communication delays.
A central component of these systems is clearly the selection of
a suitable landing site, based on hazard mapping data that is con-
tinuously collected as the lander approaches the planet's surface.

Our model has already proven to be very effective in this area
[11,23], making use of the continuous flow of data to provide, at each
iteration, a ranking of possible landing sites. In particular [28], the
aggregation functions considered were a hybrid function based on
uninorms, using the Hamacher t-norm and t-conorm, and Yager's
OWA function [39] in the averaging parts of its domain, as well as
additive and multiplicative FIMICA functions [42] with appropriate
underlying functions that ensured continuity in the [0, 1] interval.

The parametrization chosen for this problem was:

Alternatives landing sites (represented by their coordinates on a

hazard map).

Criteria estimated available sunlight, terrain slope and roughness,
etc.
Retention policy keep a subset of the best k sites found so far.

7.4. Supplier selection

Many businesses rely on external suppliers for some of their
operations, and often establish relationships with a number of
possible suppliers.

In this scenario, every time the possibility to subcontract some
work arises, it is necessary to understand whether it is convenient to
do so and, in this case, which supplier should be selected.

Understandably, this selection would need to take into account
previous choices made for similar decisions, thus allowing, for
example, the formation of stronger collaborations with suppliers
that score consistently higher than others, which is why our model is
well suited to this type of problem.

A possible parametrization for this problem would be the
following:

Alternatives suppliers under consideration.
Criteria estimated delivery time, previous reliability, price etc.
Retention policy keep all suppliers that have met quality

standards and delivered on time in the past three months.
8. Conclusions

In this paper we introduced a versatile model for decision making
in a dynamic environment, in which both sets of alternatives and
criteria undergo modifications as the problem is further explored in a
number of iterations. In this context, decisions may then be taken
either frequently, or just at the end of the process.

The proposed framework can be flexibly adapted to different
situations by choosing a retention policy for the historical set of
alternatives, i.e. a rule for selecting alternatives to be “remembered”,
and an aggregation function, which is used to compute the final
evaluations starting from scores and information in the historical set.

We shall continue our investigation onmodeling dynamic decision
processes, as well as understand to what extent our framework could
be applied to the problem of consensus, and to what degree it could be
integrated with optimal control systems.

Other interesting extensions that we aim at investigating include
the application of aggregation functions not only to the final,
aggregated rating, but also to values of some criteria that are known
to be fixed, as well as finding ways to handle missing criteria values in
some iterations.
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