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a b s t r a c t 

The purpose of this research is to investigate the optimal product unpacking location in a bricks-and- 

mortar grocery retail supply chain. Retail companies increasingly are investing in unpacking operations at 

their distribution centres (DC). Given the opportunity to unpack at the DC requires a decision as to which 

products should be selected for unpacking at the DC and which should be shipped to stores in a case pack 

(CP) or outer pack provided by the supplier. The combined unpacking and unit size decision is evaluated 

by focusing on the relevant costs at the DC and in-store, i.e., picking in the DC, unpacking either in the DC 

or in the store, shelf stacking in the store and refilling from the backroom. For replenishing stores, an ( R , 

s , nQ ) inventory policy is considered when using the supplier CP and a ( R , s , S ) policy when the product 

is unpacked at the DC. Expressions are developed to quantify the relevant volumes and to calculate the 

corresponding costs on which the unpacking decision is based. A numerical example with empirical data 

from a European modern retailer demonstrates that unpacking a subset of the stock keeping units (SKUs) 

at the DC results in a significant cost reduction potential of 8% compared to no unpacking at the DC. The 

example shows that DC unpacking can generally be highly favorable for a large share of products. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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1. Introduction 

Retailers receive products or Stock Keeping Units (SKUs) in case

packs (CPs), i.e., outer packs (secondary packaging), from their

suppliers, but sell these products in consumer units (CUs), i.e.,

eaches (primary packaging), to their customers. A well-designed

CP facilitates the handling of multiple CUs in the supply chain and

protects the products during picking and transportation. However,

the CP size also determines the minimum order quantity for the

individual stores and consequently the number of store orders of a

product per period submitted to the DC and the resulting in-store

inventory level. The number of store orders per product and the

inventory levels are not the only cost drivers that are influenced

by CP sizes. If the inventory immediately after a delivery does

not fit on the shelf space allocated, overflow inventory has to be

stored elsewhere in a store, typically in the backroom, leading to

additional costs ( Eroglu, Williams, & Waller, 2013 ). Defining an

optimal CP size is not an easy task since individual stores may
∗ Corresponding author. 

E-mail address: r.a.c.m.broekmeulen@tue.nl (R.A.C.M. Broekmeulen). 
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iffer greatly in terms of average sales and shelf space allocated

or the same product. 

As the CP frequently is considered to be too large, retailers

npack increasingly secondary packaging from manufacturers at

heir DCs to create pack sizes that better fit their needs. In an em-

irical investigation, Kuhn and Sternbeck (2013) show that full-line

upermarket retailers in Austria, Germany and Switzerland unpack

% of all SKUs listed in their DCs. Home and personal care retailers

npack as much as 63% of their SKUs to create appropriate order

ackaging quantities for their store deliveries. The present study

herefore investigates whether a retailer gains any benefit from

emoving the secondary packaging upstream in the supply chain

nd then using reusable boxes for transportation instead of using

he original manufacturer’s CP as minimum transportation unit. 

Throughout this paper, two possible alternatives are distin-

uished for grocery retailers that operate modern distribution

hannels. First, the retailer may decide to use also the supplier

P for store delivery or, second, the retailer may decide to unpack

he CP in the DC and ship individual CUs to stores. To ensure

doption in practice, only the existing CP and the individual CU

re considered, since both options can be implemented by retailers

ithout requiring any CP negotiations with their suppliers. The
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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npacking decision relates directly to ordering decisions by the

tore, meaning that all stores of the retailer can order either

nteger multiples of the supplier CP or the CU. 

This paper aims to shed light on these two unpacking alterna-

ives and their consequences, and to support retail decision-makers

y providing an evaluation and optimization model selecting the

est unpacking point for each SKU. The relevant cost drivers along

he internal retail supply chain that are dependent on the unpack-

ng decision, are identified, quantified and subsequently included

n a selection approach. As a result, the approach developed here

hows the comparative effects of unpacking products either in a

etail DC or, as done traditionally, in the stores on the different

ubsystems of the internal retail supply chain, with a special focus

n costs. Although the problem of which unpacking alternative to

hoose is highly relevant for grocery retailers, scientific research

n this topic is extremely rare. 

The remainder of this paper is organized as follows: Section

 reviews the relevant literature on this decision problem. Section

 introduces the research setting, describing the two, alternative

upply chain configurations based on the unpacking locations and

nventory policies applied. In addition, the relevant cost drivers are

efined. Section 4 describes the evaluation and decision model and

uantifies the relevant cost drivers. The evaluation and decision

odel is applied in a case study using empirical data provided by a

ajor European retailer in Section 5 . The results are presented and

iscussed in Section 6 . Section 7 summarizes the main findings of

he paper and discusses potential areas for future research. 

. Related literature 

In this section, the relevant literature on product unpacking

nd CP size decisions in grocery retailing is reviewed. 

To our knowledge, the question of which unpacking location

s best in a retail network has not yet been addressed in the

iterature. Publications exist on the composition of packaging

nd the evaluation of packaging handling (e.g., with regard to

pening the case packs), such as Gámez Albán, Soto Cardona,

ejía Argueta, and Sarmiento (2015) and Hellström and Saghir

2007) . However, the identification of an appropriate location for

npacking operations in the supply chain is neglected. 

Ketzenberg, Metters, and Vargas (2002) consider the case of

upplying stores with individual CUs. The authors argue in favor

f removing the CP constraint at the store completely by letting

tores order in CUs only. They show that considerable benefits re-

ult from removing the CP constraint, but leave the consequences

n cost to future research. However, other studies show that such

n absolute strategy might not be optimal in general. In an empir-

cal study, Kuhn and Sternbeck (2013) showed that CP size is con-

idered to be a highly relevant, interdependent planning problem

n a grocery retail chain that impacts warehouse operations as well

s transportation and in-store logistics. The decision on CP sizes

hould therefore be considered on a strategic level, or at the very

east on a tactical decision level ( Hübner, Kuhn, & Sternbeck, 2013 ).

Only very few scientific approaches exist for calculating case

ack sizes or minimum order quantities in a setting similar to the

ne studied in this paper. For example, De Souza, De Carvalho, and

rizon (2008) consider the related question of selecting container

izes in the automotive industry for feeding production lines. In

he retail environment, Sternbeck (2015) provides a cost model

or determining appropriate order packaging quantities from an

n-store perspective, building on a periodic review, order point,

rder quantity inventory system. However, in-store costs are only

ne side of the coin and upstream logistics processes, such as DC

icking, are not included in the analysis, although they play an

mportant role for retailers when deciding on case pack sizes. 
Wen, Graves, and Ren (2012) develop an approach for calcu-

ating CP sizes that considers all the relevant processes along the

nternal retail supply chain. The authors develop a cost model

onsisting of seven decision-relevant cost components, which

epresent the processes in the DC and in the stores that are

ependent on CP size. The model results in the selection of a

ackaging unit for each SKU within the packaging hierarchy of

he product, i.e., cases (supplier boxes), inners (sub-packaging) or

aches (CUs). Applying their model to a case example with real

ata reduces total costs by less than 0.5%. However, a few assump-

ions are made that do not reflect the reality of grocery retailers.

or example, shelf space per SKU in each store is assumed to be

5% higher than the order-up-to-level. This shelf space assumption

ontradicts planogram analyses in reality and therefore neglects

 significant amount of backroom activities and costs. Moreover,

npacking costs in the DC are included, while unpacking activities

n the stores are not. The possible efficiency gains in the DC by

tandardizing the unpacking activity or even mechanizing it, which

as the potential to reduce the unpacking cost compared to the

tore, is not taken into account yet. 

Wensing, Sternbeck, and Kuhn (2016) also suggest a planning

pproach that quantifies the optimal CP size of a grocery retailer.

hey develop an inventory model that comprises multiple periods

ithin a stationary cyclic model in order to cover demand distri-

utions that vary within the store’s business week and to consider

n irregular weekly replenishment policy. Therefore, the model

eneralizes the periodic review reorder point ( R , s , nQ ) inventory

olicy to a cyclic version. Compared to the present study the

uthors neglect however the decision and the costs related to the

npacking location, either the DC or the store. 

Generally, most publications on retail operations treat CP size

s being exogenous (e.g., Broekmeulen, Fransoo, van Donselaar,

 van Woensel, 2007 ; Eroglu, Williams, & Waller, 2011 ; Waller,

angari, & Williams, 2008 ). An exogenous CP size is a legitimate

ssumption, since most CPs are designed and dimensioned by

anufacturers and defined therefore externally from the retail

erspective. Nevertheless, the influence of CP size is considered

o be highly relevant. For example, Eroglu et al. (2013) integrate

he backroom effect in the calibration of reorder levels to reach

 cost minimum. The authors argue that the costs associated

ith handling overflow items lower the cost-optimal reorder

evel compared to the situation without overflows. They show

hat ignoring the costs of temporarily storing products in the

ackroom can lead to significant losses. The expected amount of

verflow inventory calculated by the authors is also relevant for

alculating store-optimal minimum order quantities. However, the

ssumption of continuous review inventory systems is usually not

ppropriate in the context of grocery retailing. Moreover, in-store

ctivities are characterized by fixed costs, related to the number

f store orders for a specific product (e.g., orientation and moving

o the shelf), and variable stacking costs, related to the number

f units stacked (e.g., putting the CUs on the shelf), resulting in

onlinear cost structures that are not integrated in the approach

f Eroglu et al. (2013) . On the other hand, if the available shelf

pace for a product is much larger than its CP size, the allocated

helf space might never be completely filled up, i.e., excess shelf

pace exists. van Donselaar, Gaur, van Woensel, Broekmeulen, and

ransoo (2010) show that local managers enlarge order quantities

or products with excess shelf space reducing the number of

tore orders for a specific product and thus the effort f or shelf

tacking. 

The literature review shows a lack of papers which pose the

uestion of where to unpack CPs in the retail network, and the

elated question of how large the optimum picking unit should

e. The goal of this paper is therefore to identify for each SKU

he better of the two possible unpacking locations in the retail
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Supplier Retail DC Retail Store

Unpacking

Unpacking

xor Subsequent 
store opera�ons

CUs

CPs SCC-1

SCC-2(R,s,S)

(R,s,nQ)

Fig. 1. Two unpacking alternatives: at the store or at the DC. 
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supply network, i.e., the DC or the store, and to consider the

corresponding cost effects of the resulting picking unit size, i.e.,

CP or CU. 

3. Research setting 

In this section, the research context is outlined and the de-

cision problem is described in greater detail in Subsection 3.1 .

Subsections 3.2 and 3.3 analyze the relevant processes and costs

included in the study and describe the replenishment policies

applied, respectively. Finally, Subsection 3.4 summarizes the

decision-relevant cost drivers. 

3.1. Decision problem 

Two alternative supply chain configurations (SCC) are consid-

ered for each SKU, depending on where in the supply chain the

product is unpacked, i.e., the secondary packaging of a product is

removed (see Fig. 1 ). 

CC-1: The secondary packaging serves as a picking unit in the

DC and is not removed until shelf-stacking takes place,

i.e., after delivery of the product to the store. From a store

perspective, all upstream handling is performed using the

original CP from the supplier. 

CC-2: The secondary packaging is removed in the retail DC and

the product is stored in temporary bins. During order

picking in the DC, the products are picked from these bins

with the CU as picking unit and transferred to reusable

boxes for shipment to stores. 

In this setting, the decision where to unpack the product is

inextricably linked with the decision which picking unit to use

in the DC. In the case where no unpacking at the DC takes place

(SCC-1), the assumption is made that the supplier CP is always

used as the picking unit. In the case of unpacking a product in

the DC (SCC-2), the assumption is that individual CUs are used as

picking unit. Combinations of CPs and CUs in one order are not

allowed as retailers mostly apply only one unit per SKU in their

distribution system, in order to avoid the need for multiple storage

locations per SKU. 

3.2. Processes and costs 

Whether SCC-1 or SCC-2 is favorable for a specific SKU depends

on several effects that occur as the product moves through the

supply chain. In the setting studied, the individual CUs are made

available to customers without any boxes on the shelf. This as-

sumption implies that the secondary packaging has to be removed,

no later than a product is stacked on the shelf. Assuming a given

supplier CP, the expected number of supplier CPs that has to be

unpacked per period is therefore independent on the unpacking

location. Differences in unpacking costs exist clearly between the

store and the DC environment. The DC is characterized by more
tandardized processes and technical support compared to the

tore. 

There are several processes which depend on the size of the

icking unit. This is why volume effects arising from the picking

nit and the selected dispatch rule must be assessed and properly

ncorporated in decision-making. The relevant processes in the

etail supply chain are illustrated in Fig. 2. 

At the DC, the picking unit determines the number of picks for

 given output volume and has therefore a major influence on DC

osts, since in general picking costs account for more than half of

otal warehouse expenses ( Rouwenhorst et al., 20 0 0 ; de Koster,

e-Duc, & Roodbergen, 2007 ). 

Store orders are sent to the DC. An order for a specific SKU

s in general denoted as “order line” since a store order consists

f several printed lines or positions, one for each specific SKU

rdered, independently of the number of units ordered of this SKU.

DC picking costs consist of a fixed portion per order line (i.e.,

rientation time, movement of the order picker to the location of

he product in the DC) and a variable portion per individual pick

i.e., grabbing the individual unit and placing it on the loading

arrier for store delivery). This explains why total picking costs

epend on the expected number of order lines and the expected

umber of units picked. Depending on the type of SCC selected,

he picking unit can be the supplier CP or the individual CU. Retail-

rs operate often different picking systems depending on the size

f the picking units. For example, flow racks for small, unpacked

roducts, or highly automated small-part picking systems. These

nclude frequently pick-by-light picking and occasionally automatic

upply of the parts to the picker, particularly if product variety is

ery large. These (small) products are usually packed into reusable

oxes that circulate between the DC and the stores. For the picking

f larger cartons and boxes, manual systems that are based on the

orker-to-parts principle (e.g., block storage, pallet rack systems)

re still most common, although the share of automatic picking is

n the rise (e.g., automatic tray building and palletizing). Different

icking systems for different picking unit sizes are naturally asso-

iated with different cost structures that must be reflected in any

ecision-making, as illustrated in Fig. 3 . Due to the higher SKU

ensity in a small parts system compared to a carton pick area, the

xed order line costs are relatively lower in a small parts system.

ecause this paper focuses on a single product situation, the effects

f order batching procedures in the retail DC are not included. 

The impact on transportation is assumed to be small enough

o be omitted from further analysis, since transportation costs are

ainly driven by the fixed costs resulting from the chosen delivery

chedule, given that the sales volume in CU stays the same. Minor

ifferences do exist of course in packaging density, depending on

he use of the CP or CU as the picking unit, with a possible effect

n the necessary freight space. In the single product case under

tudy, only a very limited effect on transportation costs could be

bserved. 

Store operations are the most complex operational subsystem

n the internal retail supply chain. The standard in-store process
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Fig. 2. Internal retail supply chain from DC to shelf. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pi
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co
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/C

U]

Order size [CU/order line]

Carton pick with CP=4 (used in SCC-1)

Small parts picking (used in SCC-2)
Carton pick with CP=6 (used in SCC-1)

Fig. 3. Example of a cost comparison between two carton picking systems and a small-parts picking system, using the cost factors from Table 4 . Note that for carton picking, 

the order size is measured in CUs, based on the number of CUs per CP. 
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n modern retail markets is mostly designed as follows: after a

roduct delivery from the DC on pallets or in roll cages, products

re either carried directly in front of the shelf or are kept in

pecific areas of the backroom until shelf stacking starts. During

he shelf stacking process, products are unpacked if they are

elivered in CPs, and put on the shelf. If the shelf space for an

KU is insufficient for accommodating all the products delivered,

hey have to be carried to the backroom, stored in the backroom

nd restocked later when free shelf space becomes available after

onsumer purchases. Such temporary storage in the backroom of

he store is costly ( Broekmeulen et al., 2007; Sternbeck, 2015 ).

n the one hand, the store management is interested in frequent

estocking, since the shelf is the preferred location for inventory

n the store ( Hariga, Al-Ahmari, & Mohamed, 2007 ). On the other

and, enabling combined restocks of several SKUs by establishing

 schedule for in-store replenishments reduces the in-store replen-

shment cost. Generally, a retailer prefers to refill shelves from the

ackroom outside store hours in order to avoid the disruption for

ustomers and regular staff and due to higher stocking efficiency.

cheduling the in-store replenishments just before the shelf stack-

ng of every (potential) DC delivery has the additional benefit that

he store clerks assigned already to shelf stacking can take over

he refilling tasks from the backroom. It also ensures First In First
ut rotation of the stock. Berg van den, Sharp, Gademann, and

ochet (1998) make also a distinction between replenishments

uring idle and busy periods in a warehouse. Fig. 4 illustrates the

elationship between deliveries from the DC and the moment of

n-store replenishment for the case that these activities are tightly

ynchronized. In the case that pallets or roll cages are regularly

laced in the backroom before shelf stacking starts later, this will

e reflected accordingly in the lead time and the pallets or roll

ages are treated as stock in transit. 

The fixed frequency of in-store replenishments during a review

eriod gives an internal review period for the inventory policy that

ontrols the inventory on the shelf in situations with backroom

nventory. An SKU gets a restock in CUs when the inventory on the

helf drops below the shelf space, which acts as the order-up-to

evel. The probability of having backroom inventory together with

he demand during the internal review period determine the

xpected number of in-store replenishments E [ NIR ]. 

When the shelf space in combination with the frequency of

n-store replenishments is too low to guarantee a sufficient fill

ate, the store manager has to increase the frequency of in-store

eplenishments to guarantee a sufficient fill rate during the inter-

al review period. For SKUs with a high demand uncertainty and

ery small shelf space allocated compared to the demand during
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Fig. 4. The relationship between shelf and backroom inventory with a single periodic in-store replenishment from the backroom per review period R. The in-store replen- 

ishments are synchronized with the potential delivery moments of the DC, such that in-store replenishments always precede shelf stacking of the new stock. 
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the internal review period, just in time replenishments based

on a continuous review of inventory on the shelf are needed.

Otherwise, the frequency of scheduled in-store replenishments

becomes impractical. For these situations, models based on contin-

uous review and a space restriction, such as described by Hariga

(2010) and Eroglu et al. (2013) are more suitable and these SKUs

are not further considered in this research setting. 

Note that the presented approach supports rather modern retail

channels with retail-operated DCs and stores with backroom areas

and well-defined planograms for the merchandize in developed

or middle-income countries. The effect of overflow inventory is

largely absent in traditional stores in emerging markets (e.g.,

Gámez Albán et al., 2015 ). However, this study mainly relates to

the European grocery retail market including discounters and full-

line supermarkets. The stores of those retailers include generally a

backroom area. 

3.3. Store replenishment policies 

The amount of overflow inventory in the backroom and the

frequency of in-store replenishments depend on store specific

characteristics, such as the mean and variance of the SKU demand

and the allocated shelf space for the SKU in the planogram,

but also on the type of replenishment policy and the associated

parameters. The delivery schedule from the DC, which is used

to combine order lines for individual SKUs in store orders to

coordinate transportation, determines a periodic review inventory

policy with a given review period and lead-time. The picking unit

gives a lower bound on the minimal order quantity (MOQ) and

the incremental order quantity (IOQ). The minimal order quantity

sets a lower limit on the order size that a store can order. The

incremental order quantity determines the step size in which the

order size can be increased, often to facilitate efficient handling

in the supply chain. A higher MOQ reduces the expected number

of order lines by increasing the time between orders. Without
npacking at the DC, the CP is used as picking unit and the size of

he CP is both the MOQ and the IOQ. Unpacking at the DC results

n the CU as picking unit, which could be too low to use as MOQ,

ince this would result in a high number of order lines. With

tores that differ in demand and shelf space, a CP with a fixed

ize for all stores is less flexible than using the CU together with

 store-specific MOQ and/or IOQ to reduce the number of order

ines. A periodic review inventory policy with a review period R

nd fixed CP size Q is in general reflected in practice by an ( R , s ,

Q ) inventory policy. Note that s is the reorder level that is used

o trigger an order at a review moment and n indicates that the

rder size must be an integer multiple of the value Q . For situa-

ions with periodic review, a store-specific MOQ and IOQ = 1, the

 R , s , S ) inventory policy applies. In such an inventory system, the

rder-up-to level S is determined by S = s −1 + MOQ . An alternative

nventory policy in the situation with the CU as picking unit would

e the ( R , s , nQ ) inventory policy, but now with a store-specific

 = MOQ and IOQ = MOQ . Note that setting IOQ equal to MOQ is

ore restrictive than allowing that IOQ = 1. In this research setting,

o additional cost benefit from setting IOQ = MOQ is assumed

ince the handling along the supply chain is not considered to be

ependent on the IOQ . But in the case that the automated store

eplenishment system used by the retailer only supports the ( R ,

 , nQ ) logic, this alternative becomes interesting. Based on these

ssumptions, the replenishment policy for SCC-1 is ( R , s , nQ ) with

he supplier CP as MOQ and IOQ , and the replenishment policy for

CC-2 is ( R , s , S ) with a store specific MOQ and IOQ = 1. A more

n-depth discussion on the advantages and disadvantages of the

ifferent replenishment policies is given in Section 4 . 

.4. Summarizing the decision-relevant cost drivers 

Together with the inventory policy chosen, the MOQ and IOQ

nfluence ( 1 ) overall store inventory carrying, ( 2 ) shelf stacking,

 3 ) backroom storage as well as ( 4 ) in-store shelf refilling from the
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Table 1 

Cost types considered in the decision model, based on Gámez Albán et al. (2015) and Wen et al. (2012) , and complemented by 

the authors. 

Cost type Cost driver(s) 

DC picking costs Expected number of order lines ( = E [ OL ]) 

Expected number of supplier CPs or CUs picked (depending on configuration) 

DC unpacking costs Expected number of supplier CPs unpacked at the DC 

Store inventory costs (capital costs) Expected inventory on-hand in the store (shelf plus backroom) ( = E [ I OH ]) 

Backorder penalty costs Expected amount of backorders 

Store unpacking cost Expected number of supplier CPs unpacked in the store 

Store shelf stacking costs Expected number of order lines ( = E [ OL ]) 

Store backroom storage costs (space costs) Expected inventory on-hand in the backroom ( = E [ I BR ]) 

Store refilling costs from backroom Expected number of in-store replenishments from the backroom ( = E [ NIR ]) 
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ackroom. First, the MOQ and IOQ influence the expected overall

nventory on-hand in the store (shelf and backroom) E [ I OH ], and

herefore also the capital tied up in the store, since order sizes

nd therefore order frequencies depend on these parameters. Note

hat the storage cost for inventory on the shelf (space costs) is

unk, since the planogram, i.e., shelf space allocation, is out of

cope in this research. Second, the size of a CP or MOQ affects

helf stacking, which is characterized by fixed costs per order line

nd variable costs per CU delivered ( van Zelst, van Donselaar, van

oensel, Broekmeulen, & Fransoo, 2009 ). Because the expected

umber of order lines E [ OL ] depends significantly on the CP or

OQ size, shelf stacking is affected by the unpacking decision.

hird, the size of the MOQ and IOQ impact the degree to which

tems delivered fit onto the shelf at the time of delivery since shelf

pace allocated in the planogram is restricted. The unpacking deci-

ion determines the degree of freedom in setting the MOQ and IOQ

nd therefore influences the expected inventory on-hand in the

ackroom E [ I BR ]. As the MOQ and/or IOQ increase, the probability

ncreases that shelf space will be insufficient for accommodating

ll the products delivered. On the other hand, a small MOQ in

he presence of abundant shelf space results in overly frequent

helf-stacking activities, associated with fixed stacking costs per

rder line. Note that unpacking is considered separately and not

ncluded in shelf-stacking costs. For the products stored temporar-

ly in the backroom, backroom storage costs are assumed based

n the expected backroom inventory E [ I BR ]. These costs are based

n the shortage of backroom space and the low level of organi-

ation in the backroom. Fourth, because the amount of overflow

nventory depends on MOQ and IOQ , the processes associated with

efilling the shelf from the backroom must also be taken into

ccount when planning an appropriate unpacking location. Table 1

ives an overview of the cost types in the research setting. 

. Model 

This section describes the model for selecting the optimal

npacking location in an internal retail supply chain. The notation

 Table 2 ) and assumptions are introduced first ( Subsection 4.1 ),

ollowed by derivation of expressions for several cost drivers for

he respective order policies ( Subsection 4.2 ), these being required

o formulate the overall optimization model ( Subsection 4.3 ). 

.1. Main assumptions and notation 

A single product situation is modelled, in which the deci-

ion on the unpacking location and possibly the decision on the

tore-specific MOQ is independent of decisions concerning other

roducts in the supply chain. When a retailer offers a product

n different sizes to the customers in the stores (primary pack-

ging), these product variants are considered as separate SKUs.

he assumption is made that the retailer displays and sells the

roducts generally in CUs only, and that all products are delivered
o the retail DC in multiples of a secondary packaging, i.e., a CP

f a fixed size. A further assumption is that the decisions do not

nfluence shipment sizes from the manufacturer to the retail DC.

n ample supply of external CPs and no capacity restrictions for

he unpacking operations at the DC or the store are assumed.

ach stage in the supply chain receives only one size from the

receding stage, i.e., they receive either CPs or CUs as picking

nits, and not a mix of both during the planning horizon. 

The backroom area is assumed being sufficiently large to

ccommodate the complete DC delivery until the shelf stacking

rocess starts if DC deliveries and shelf stacking are not tightly

ynchronized. Moreover, the backroom is assumed to be uncapac-

tated for the temporary storage of ‘overflow inventory’ when the

C delivery does not entirely fit onto the shelves. 

The fixed review period for the stores is determined by the de-

ivery schedule of the DC. A delivery schedule defines the intervals,

.e., the time between delivery, with which a store receives deliv-

ries from the warehouse ( Holzapfel, Hübner, Kuhn, & Sternbeck,

016; Sternbeck & Kuhn, 2014 ). Delivery intervals of equal length

re assumed. The lead-time for the store consists of the lead-time

rom the DC plus the time between delivery and the start of the

helf stacking. Due to the uninterrupted delivery to the shelves in

he stores, the lead-time is considered to be deterministic. 

Only the two SCCs mentioned in the research setting are

onsidered. In SCC-1, denoted by the index m = 1, the store orders

rom the retail DC in multiples of the CP size Q using the ( R , s ,

Q ) policy, with review period R and reorder level s . In SCC-2,

enoted by the index m = 2, the store orders using the ( R , s , S )

olicy, which results in replenishment quantities that are greater

han or equal to a MOQ . 

As far as store demand is concerned, stationary demand for

he product from a discrete demand distribution is assumed. The

robability mass function P [ D ( τ , τ + T ) = d ] for the demand during

 period of length T can be obtained by the method of Adan,

an Eenige, and Resing (1995) using the first two moments of the

emand, μT and σ T , or directly by using the empirical distribution.

.2. Calculation of cost drivers 

In the next step, expressions are developed to calculate all the

elevant cost drivers described in Section 3 and listed in Table 1 .

hese cost drivers depend on the inventory policy used by the

tore in a given SCC. 

Assuming the SCC-1 strategy ( m = 1), then ( R , s , nQ ) is the

elevant policy (see Silver, Pyke, & Peterson, 1998 ). At periodic

eview moment τ , a replenishment order of size OS τ with n τ CPs

each of size Q ) is only created if the inventory position, which is

he sum of inventory on hand in the store and inventory in transit,

s strictly below reorder level s . The value of n τ is chosen such

hat the inventory position just after a replenishment decision is

t or above s , but strictly less than s + Q . If IP −τ is defined as the

nventory position at review moment τ just before an order is
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Table 2 

Notation. 

Symbol Description 

β Fill rate 

BO Backorders 

C TRC 
m Total relevant costs for an SKU in supply chain configuration m 

C DSFix Fixed direct stacking costs in the store 

C BR Backroom storage costs 

C IR Costs of an in-store replenishment order line from the backroom 

C OPDCFix 
m Fixed order picking costs in the DC in supply chain configuration m 

C OPDC _ CP 
m Variable order picking costs per CP in the DC in supply chain configuration m 

C OPDC _ CU 
m Variable order picking cost per CU in the DC in supply chain configuration m 

C UNPACK 
m Variable unpacking costs per external CP in supply chain configuration m 

D ( τ , τ +T ) Demand between τ and τ +T (period of length T ) 

F Frequency per review period of the in-store replenishments from the backroom 

h Holding cost parameter related to review period R 

I BR Inventory on hand in the backroom 

I OH Inventory on hand in the store (shelf plus backroom) 

IP Inventory position 

IOQ Incremental order quantity 

L Lead-time 

m Index for the supply chain configuration (SCC), m = 1 denotes SCC-1 and m = 2 denotes SCC-2 

MOQ Minimum order quantity ( decision variable ) 

NIR Number of in-store replenishment order lines from the backroom 

OL Number of order lines in store delivery from DC 

OS Order size 

p Backorder penalty costs 

Q CP size, externally defined by the supplier 

R Review period for the store orders 

s Reorder level ( decision variable ) 

S Order-up-to level 

V Shelf capacity 

w Index for the store, w εW 

W Set of retail chain’s stores, W ε {1, 2, ..., w , …, | W |} 

μT , σ T Mean and standard deviation of the demand during a period of length T 

ρ In-store replenishment moment 

τ Periodic review moment 
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placed, then n τ is determined as follows: 

OS RsnQ 
τ = n τ · Q = 

s − IP −τ
Q 

· Q if · IP −τ < s (1)

Note that x rounds up x to the nearest integer. 

In a backordering system with discrete demand, the inventory

position after ordering IP + τ is known to be uniformly distributed

between [ s , ���, s −1 + Q ] ( Hadley & Whitin, 1963 ). This result,

however, does not hold for lost sales systems. Following common

practice as discussed in Silver et al. (1998) , the reorder level is set

as follows: 

s = SS + E [ D ( τ, τ + R + L ) ] (2)

In ( 2 ), SS is the safety stock and E [ D ( τ , τ + R + L )] the expected

demand during review period R plus lead time L . Note that the

parameter s is set specifically for store and product in SCC-1. 

With the SCC-2 strategy ( m = 2), replenishment follows the ( R ,

s , S ) policy, with R being the review period, s the reorder level and

S the order-up-to level. As with the ( R , s , nQ ) policy, an order is

placed when the IP is strictly below the reorder level. The order

size is determined as follows: 

OS RsS 
τ = S − IP −τ if · IP −τ < s (3)

Note that there is no CP restriction in this situation. In this

case, however, the difference between the order-up-to and reorder

levels determines the expected number of order lines that drive

picking and shelf-stacking costs. The ( R , s , S ) policy is interesting

in the case of positive fixed ordering costs and replenishment in

CUs (after unpacking), because the inventory position is always

raised exactly up to the maximum inventory level given by S . The

minimum order quantity MOQ is defined as the difference between

the order-up-to level and the reorder level: MOQ = S −s + 1. It is

guaranteed that this amount at least is ordered with every order.
n a backordering system with discrete demand, the distribution

f the inventory position after ordering IP + τ , which is between

 s , ���, s −1 + MOQ ], can be determined recursively based on

enewal theory using the procedure described by Zheng and

edergruen (1991) . Note, the parameters s and S are set specifically

or store and product. 

Looking at the different phases of the order cycle, first τ +L

s defined, which is the moment a potential delivery arrives at

he stock point and is added to the inventory on hand. Note that

he delivery is potential, because not every review period results

n an order being placed. The lowest inventory on hand occurs

fter τ + R + L , which is the end of a potential delivery cycle,

mmediately before a potential delivery arrives at the stock point. 

The variable representing the difference between IP + τ and the

eorder level minus 1 is denoted by � and has the range [1, ���,

 ]. For the ( R , s , nQ ) policy and assuming backorders, � is uni-

ormly distributed between 1 and the incremental order quantity,

hich is in SCC-1 the CP size Q ( U = Q ). For the ( R , s , S ) policy,

he procedure developed by Zheng and Federgruen (1991) can be

pplied to determine the distribution of �, with U = MOQ . 

For the classical single-item, single-echelon inventory system

nder standard assumptions (independent demands, backordering,

 fixed ordering cost, convex holding and backordering costs), the

 R , s , S ) policy is known to be the optimal policy for minimizing

he long-run average costs ( Veinott, 1966 and Zheng & Federgruen,

991 ). When considering service constraints, the ( R , s , S ) policy

s not necessarily the optimum policy ( Axsäter, 2006 , par. 6.2.2).

n a grocery retailing environment the lost-sales case and not

he backordering case is relevant. In the case of high fill rates or

elatively high backorder penalty costs, the lost-sales case can be

pproximated by assuming an inventory policy with backordering.

n the numerical study, the result obtained by the backordering

pproximation will be compared to the result of a simulation
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f a lost sales system to get an indication of the approximation

rror. 

Based on the concept of the potential delivery cycle, expres-

ions are developed for several cost drivers for the ( R , s , nQ ) and ( R ,

 , S ) policies under discrete demand. The cost drivers are exact for

he backordering scenario and approximate for the lost sales sce-

ario. The following cost drivers are used in the presented decision

odel: expected inventory on-hand E [ I OH ], fill rate β , expected

umber of order lines E [ OL ], expected backroom inventory E [ I BR ]

nd expected number of in-store replenishment order lines E [ NIR ].

The expected inventory on hand E [ I OH ] after a potential deliv-

ry cycle is determined by the IP + τ minus the demand during the

eview period plus the lead time. 

 

[
I OH ( τ + R + L ) 

]
= E 

[ (
IP + τ − D ( τ, τ + R + L ) 

)+ ] 

= E 
[
( s − 1 + � − D ( τ, τ + R + L ) ) 

+ ]

= 

U ∑ 

i =1 

P [ � = i ] · E 
[
( s − 1 + i − D ( τ, τ + R + L ) ) 

+ ]

= 

U ∑ 

i =1 

P [ � = i ] ·
∞ ∑ 

d=0 

( s − 1 + i − d ) 
+ · P [ D ( τ, τ + R + L ) = d ] 

= 

U ∑ 

i =1 

P [ � = i ] ·
s −1+ i ∑ 

d=0 

( s − 1 + i − d ) · P [ D ( τ, τ + R + L ) = d ] (4) 

Note that ( x ) + is equal to max{0, x }. 

According to Axsäter (2006 , par 5.12), the fill rate β for a

eriodic review system is defined by the additional backorders

ccurring during a review period divided by the expected demand

uring the review period. 

= 1 − E [ BO ( τ + R + L ) ] − E [ BO ( τ + L ) ] 

E [ D ( τ + L, τ + R + L ) ] 

= 

E 
[
I OH ( τ + L ) 

]
− E 

[
I OH ( τ + R + L ) 

]
E [ D ( τ + L, τ + R + L ) ] 

(5) 

The expected number of order lines E [ OL ] at a review period τ
s 

 [ OL ] = P 
[
IP + τ − D ( τ, τ + R ) < s 

]
= P [ s − 1 + � − D ( τ, τ + R ) ≤ s − 1 ] 

= P [ D ( τ, τ + R ) ≥ �] (6) 

The probability of having overflow inventory on hand in the

ackroom P BR just after a potential delivery and after direct stack-

ng is equal to the probability that the IP just after a potential

rder moment minus the demand during the lead time is greater

han the shelf capacity V , i.e.,: 

 BR = P 
[
IP + τ − D ( τ, τ + L ) > V 

]
= P [ s − 1 + � − D ( τ, τ + L ) > V ] 

(7) 

Note that the backroom is never needed to store the product

hen the allocated shelf space V is greater than or equal to the

aximum inventory on hand, which in turn is equal to s −1 + Q for

he ( R , s , nQ ) policy and S for the ( R , s , S ) policy. Based on the ex-

ression for overflow inventory, the resulting expected backroom

nventory E [ I BR ] immediately after a potential delivery is: 

 

[
I BR 

]
= E 

[
( s − 1 + � − D ( τ, τ + L ) − V ) 

+ ] (8) 

The fixed frequency F determines the number of potential

n-store replenishments per review period. If positive demand

as occurred between two consecutive in-store replenishment

oments ρ −1 and ρ (with an internal review period R / F ), and

nventory is still available in the backroom, an in-store replen-

shment order line results, which is added to the trip from the
ackroom to the shelf. The expected number of in-store replenish-

ent order lines E [ NIR ] per review period is then as follows: 

 [ NIR ] = 

F ∑ 

ρ=1 

P 

[ 
D 

(
τ + L + ( ρ − 1 ) · R 

F 
, τ + L + ρ · R 

F 

)
> 0 

] 

·P 
[ 

IP + τ − D 

(
τ, τ + L + ( ρ − 1 ) · R 

F 

)
> V 

] 
(9) 

Note that if the shelf space is too small to guarantee the target

ll rate with only in-store replenishments at the end of each in-

ernal review period, additional refilling operations are necessary

uring the internal review periods and Eq. (9) gives only a lower

ound on E [ NIR ]. 

.3. Optimization model 

For a given SKU, the relevant cost drivers can be determined

or each store w ∈ W and SCC m using the expressions introduced

nd assuming backordering. The decision-relevant average total

ost for an SKU under SCC m during a review period is: 

 

T RC 
m 

= 

∑ 

w 

h · E 
[
I OH 

]
wm 

+ p · ( 1 − βwm 

) · μR + 

(
C OPDCF ix 

m 

+ C DSF ix 
)

·E [ OL ] wm 

+ C BR · E 
[
I BR 

]
wm 

+ C IR · E [ NIR ] wm 

+ 

(
1 

Q 

(
C UNPACK 

m 

+ C OPDC _ CP 
m 

)
+ C OPDC _ CU 

m 

)
· μR (10) 

To find the optimal costs for configuration SCC-1 with unpack-

ng at the store ( m = 1), the optimization procedure searches for

he reorder level s ∗ that minimizes the cost function in Eq. (10) .

n configuration SCC-2, where the CP is unpacked at the retail DC

 m = 2), the procedure searches for the combination of MOQ and

eorder level s ∗ that minimizes the cost function by full enumera-

ion. In the latter case, the procedure starts with MOQ = 1 and sub-

equently increases the MOQ until a predefined upper bound for it

s reached. For each MOQ considered, the procedure searches for

he corresponding optimal reorder level. The problem requires an

xhaustive search, since the cost function has multiple local min-

ma, due to the integer nature of the reorder level. Without a re-

triction on the number of SKUs in the various picking systems, the

ptimal configuration for an SKU is the SCC with the lowest costs. 

An alternative, service-constrained optimization model is based

n finding the reorder level ˆ s that minimizes C T RC 
wm 

, subject to the

onstraint that βwm 

≥ ˆ β, with 

ˆ β being the target fill rate. If a

ervice-level constraint exists, the penalty cost p is set to zero in

q. (10) . 

The decision model was implemented in Microsoft Access 2013

nd all cost driver expressions were coded in Visual Basic for

pplications. Optimizing the reorder level for a single SKU and

 given MOQ or Q requires an average of 1.6 milliseconds on a

esktop PC with an Intel Core i5-3570 CPU. 

. Numerical study 

In this section, the model is applied to a hypothetical envi-

onment that reflects real-life conditions. In the study, empirical

econdary data is used, obtained from a large European retail com-

any (referred to in the following as DELTA). However, since costs

ould not be disclosed, cost factors available in the literature are

pplied, mainly from van Zelst et al. (2009) and Huntjens (2008) .

his procedure leads to an artificial company with documented

ost factors that can be reproduced in future research projects. 

DELTA is a major European home and personal care retail

ompany. The company operates over 1500 stores in Germany that

re supplied with the whole assortment of roughly 13,0 0 0 SKUs

rom two types of DCs. 
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Table 3 

Descriptive store statistics. 

Store Fraction of these stores in the chain Sales [CU/day] Shelf space [CU] Number of SKUs 

Min Average Max Average 

1 0.16 0.05 1.23 9.73 13.38 1255 

2 0.24 0.03 0.65 4.60 13.29 1251 

3 0.11 0.01 0.65 6.99 13.01 1195 

4 0.11 0.06 1.18 13.81 15.38 1277 

5 0.38 0.02 0.72 4.29 13.31 1202 
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The first DC type is characterized by a conventional carton pick

process, in which supplier CPs are packed onto pallets which are

transported to the stores. This DC corresponds to configuration

SCC-1. Picking is carried out manually. Because the picking unit

sizes are greater when using the CP instead of the CU, there is only

one provisioning layer from which CPs are picked, this resulting

in longer travel distances and times per stop compared to intralo-

gistics systems with several provisioning layers. In this type of DC,

DELTA cannot modify the supplier CP and uses CP sizes as the gen-

eral picking and distribution unit to supply the stores. The second

type of DC is one in which small pieces, sub-packages or single

CUs are picked into reusable boxes which are distributed to the

stores. This DC more or less matches configuration SCC-2. The cor-

responding unpacking activities are also part of the intralogistics

system. Highly automated unpacking lines are in place for unpack-

ing supplier CPs, so that a smaller packaging unit can be selected

as the picking and distribution unit. The pick-by-light picking

system is adapted to the picking unit sizes with specified working

areas and several layers from which the picker grabs the products.

This reduces remarkably travel distances, resulting in less time per

stop and pick compared to a conventional case picking system. 

We obtained data from DELTA on three product categories

(cleaning agents, hair care products and organic food) in five typ-

ical stores, ranging from small to large, based on the sales in CU

over all categories carried in the store. These stores can order daily,

i.e., a review period corresponds to one sales day, but to facilitate

work at the DC, the lead-time is four days, a reasonable concept

since the retail format operates according to the everyday-low-

price principle. A constant lead time of L = 4 and a review period of

R = 1 are assumed. The company aims for a target fill rate of 99%. 

Of the 1279 SKUs in the data set, 1135 are in the assortment

of all five stores and 20 are only sold in one store. The data set

of 6180 store-SKU combinations includes one year of demand

data (mean and variance of daily sales from May 2012 until April

2013), CP sizes and shelf capacities. From the 6180 store-SKU

combinations, 80% are fitted with a mixed negative binomial

distribution, 13% with a mixed geometric distribution, and 7% with

a mixed binomial distribution according to the method of Adan

et al. (1995) . The average CP from the supplier contained 10.87

CUs on average with a minimum of 2 and a maximum of 216.

The actual CP sizes and CUs used for store orders contained 8.46

CUs on average, with a minimum of 1 and a maximum of 35. This

lower range is a result from using the supplier’s sub-packaging

(inner) for 74 SKUs. The supplier CP was completely unpacked

for only 8 SKUs. The original supplier CP was used in all other

1197 instances. Table 3 shows descriptive statistics on daily sales,

available shelf space for the SKUs and assortment size per store. 

There are 58 store-SKU combinations requiring more than

one in-store replenishment from backroom storage per review

period due to limited shelf space and high average daily sales or

variance in the daily sales. A single in-store replenishment per

review period, assumed in this numerical study, would therefore

be insufficient for supporting an in-store target fill rate of 99%.

These store-SKU combinations, which make up 2% of sales, are

excluded in the remainder of the analysis as we propose to apply
ontinuous review of these few products according to the models

rovided for example by Hariga (2010) and Eroglu et al. (2013) or

o increase the frequency of in-store replenishments. 

Since we are unable to disclose DELTA’s actual cost data, the

ost data in this numerical study draws on empirical data compiled

y Huntjens (2008) from a comparable retailer in the Netherlands

nd therefore reflects the Dutch environment. The assumption is

ade that all products have the same holding cost h = 0.25 €/(CU

nd year), based on an average product value of 2.5 €/CU and an

nventory carrying charge of 10% per year. The penalty cost p is

erived from the holding cost using the newsvendor equation,

ased on the target fill rate β of 0.99 and a lead-time of 4 days,

esulting in 0.275 €/CU. An average wage of 18 €/h is assumed for

he distribution centre and 9 €/h for the temporary shelf stackers.

n reference to the study of van Zelst et al. (2009) , the fixed time

er order line in the store is 12 seconds, resulting in an average

rder line cost in the store for direct shelf stacking C DSFix of 0.03

/OL. In a conventional order picking system for CPs, the time per

top for an SKU is assumed to be 6 seconds on average according

o the motion and time study by Huntjens (2008) , which results

n an average order line cost in the DC C OPDCF ix 
1 

of 0.03 €/OL. In a

ick-by-light order picking system for CUs, the time per stop for

n SKU is only 2 seconds, resulting in C OPDCF ix 
2 

of 0.01 €/OL. The

rabbing times in the DC are 4.5 seconds per CP in the conven-

ional picking area and 1.5 seconds per CU in the small-parts area,

esulting in C OPDC _ CP 
1 

= 0.0225 €/CP ( C OPDC _ CP 
2 

= 0) and C OPDC _ CU 
2 

=
.0075 €/CU ( C OPDC _ CU 

1 
= 0). According to van Zelst et al. (2009) ,

npacking in the store during shelf-stacking takes an average of

0 seconds per CP, resulting in C UNPACK 
1 

= 0.025 €/CP. By using an

utomated unpacking system in the DC, the unpacking cost there

re C UNPACK 
2 

= 0.015 €/CP. The time per SKU needed for an in-store

eplenishment order line from the backroom is assumed to be

he same as for an order line during direct stacking, since in both

ituations only the time without unpacking is considered, resulting

n C IR =C DSFix = 0.03 €/OL. The backroom storage costs C BR is set to

.1 €/(CU and year) to account for the storage operations needed

o keep the storage area tidy and accessible. Table 4 summarizes

he cost factors. 

. Results and discussion 

This section presents and discusses the results of the numerical

tudy applied. Scenario A shows the current situation at DELTA

nd four additional scenarios are calculated: 

A Current situation at DELTA (one size for all stores): All stores

receive products in the units currently applied by DELTA, either

in the supplier CP or in the units created in the DC (using

inners or CUs) and unpacking is done during shelf stacking (for

CPs and inners). 

B SCC-1 (CPs for all stores and all products): All stores receive

exclusively all products in supplier CPs of size Q and unpacking

is done during shelf stacking. Store orders are based on a ( R , s ,

nQ ) policy. 

C SCC-2 (CUs for all stores and all products): All stores receive

exclusively all products unpacked from the DC in CUs and store
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Table 4 

Cost data for the numerical study. 

Cost type SCC-1 SCC-2 

Fixed DC picking cost C OPDCFix 
1 = 0 . 03 [€/OL] C OPDCFix 

2 = 0 . 01 [€/OL] 

Variable DC picking cost C OPDC _ CP 
1 

= 0 . 0225 [€/CP] C OPDC _ CU 
2 

= 0 . 0075 [€/CU] 

Unpacking cost C UNPACK 
1 = 0 . 025 [€/CP] C UNPACK 

2 = 0 . 015 [€/CP] 

Inventory cost h = 0.25 [€/CU.year] 

Penalty cost p = 0.275 [€/CU] 

Fixed store shelf-stacking cost C DSFix = 0.03 [€/OL] 

In-store replenishment cost C IR =0.03 [€/OL] 
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Fig. 5. Overall costs per scenario (daily costs for all SKUs for an average store). 
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orders are based on a ( R , s , S ) policy with a store-specific MOQ

and IOQ = 1. 

D Optimal solution (per product one picking unit for all stores) :

All stores receive a product either by configuration 1 (SCC-1,

m = 1) or configuration 2 (SCC-2, m = 2), depending on which

configuration achieves minimum costs for all stores. 

E Lower bound (LB) (optimal picking unit per product per store):

Each store receives a product either by configuration 1 (SCC-1,

m = 1) or configuration 2 (SCC-2, m = 2), depending on which

configuration is cost-optimal for that specific store-product

combination. This scenario requires that in the DC, a product

can either be picked in CPs or CUs, and therefore represents a

lower bound on the achievable total cost value. 

Both the pure SCC-1 (B) and pure SCC-2 (C) configurations are

overed here to get better insight into the optimal solution (D) and

ts relation to these exclusive scenarios without any differentiation

cross SKUs. The pure SCC-1 configuration is mainly applied by

odern retail channels of large hyper or supermarkets, while

he pure SCC-2 configuration is sometimes found in traditional

tores, often in emerging markets. Please note, when applying the

ure SCC-2 to retail distribution systems of traditional stores in

merging markets the picking cost structure will be different as

ssumed in the present study. In emerging markets – even for

 SCC-2 configuration – manual systems are generally common,

ince labour cost are still too low to merit investments in labor

aving automated systems ( Bartholdi & Hackman, 2016 , page 189).

n addition the supply chain would favor inners instead of eaches

or better handling and protection of products. 

Furthermore, the situation where an SKU can be picked at

he DC either in CPs or in CUs is considered (E), which probably

equires multiple storage locations at the DC. In this case, each

tore-SKU combination is assigned exclusively to one SCC (no

ombination of CPs and CUs for one store-SKU combination) and

ach store receives the product in the configuration that results

n minimal costs for the individual store. Scenario E therefore

epresents a lower bound on the minimal costs achievable. 

In the following, first cost effects are considered as the pre-

ented models aim to minimize overall relevant costs with regard

o the product unpacking decision ( Subsection 6.1 ). Second, struc-

ural considerations of the results follow ( Subsection 6.2 ). Third,

elected sensitivity analyses are carried out to assess the robust-

ess of the results obtained ( Subsection 6.3 ). Fourth, alternative

pproaches are assessed, which might be of high relevance for

etail decision makers ( Subsection 6.4 ). 

.1. Cost considerations of the results 

First of all, the focus of this numerical study is on total costs

nd the individual cost drivers as cost minimization is the ob-

ective of the models applied. The results are calculated as the

aily costs for all SKUs considered for an average store (weighted

verage over the five stores included in the analysis, using the

raction of the store in the chain as weight factor). Table 5 shows

he results. The search space for the optimal MOQ is limited to
50 units, which is well above the optimal values for scenarios C,

, and E determined given the maximum values as shown in the

ast row of Table 5. 

Quality of the approximation: To check the effect of the back-

rdering assumption on the approximation of the investigated

ost sales system, a simulation study was executed to recalculate

he cost drivers and the total costs in a lost sales environment.

or each of the 12,244 experiments, at least 10 replications were

xecuted, each consisting of 350 warming up periods, followed by

0 0 0 periods in which the statistics are recorded. The simulation

as replicated until an absolute precision for the fill rate β of

0.002 was reached with 95% confidence. The average relative

pproximation error ( = 100% 

∗ (simulation value − approximation

alue)/simulation value) of the total costs was 0.02% and the stan-

ard deviation was 2.75%. The larger errors were mainly caused

y situations in which the in-store replenishment frequency of

nce per review period was insufficient in combination with

he available shelf space. This indicates a high quality of the

pproximations applied for our setting. 

Overall cost effects: In the optimal solution (D), the overall

osts are reduced by 5.3% compared to the current situation (A)

nd by 8.1% compared to pure SCC-1 (B), which is the standard

onfiguration for many grocery retail companies. The overall costs

f the optimal solution (D) are very close to the lower bound (E),

ith a cost difference of less than 0.4% (see Fig. 5 ). This implies, at

east in this case, that major cost reductions can be achieved even

hen differentiation between stores is not allowed and an SKU is

elivered to all stores in the same mode, either in CPs or in CUs. 

Comparison of SCC-1 (B) and Optimal (D): SCC-1 is the standard

onfiguration for many modern grocery retailers (often applied ex-

lusively). The exclusive SCC-1 scenario (B) was compared with the

ptimal solution (D) in greater detail. Fig. 6 shows that in absolute

erms, the holding, backroom, and unpacking costs account for the

argest cost reductions, while the picking costs in the DC increase. 
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Table 5 

Results of the scenario analysis with cost-optimal service. All costs are in €/day for an aver- 

age store for all SKUs considered. 

Current (A) SCC-1 (B) SCC-2 (C) Optimal (D) LB (E) 

Holding costs 6 .88 7 .80 6 .54 6 .75 6 .70 

Penalty costs 2 .99 2 .98 2 .90 2 .92 2 .89 

Picking costs at DC 6 .74 6 .48 8 .74 7 .10 7 .11 

Unpacking costs 3 .23 3 .11 1 .86 2 .23 2 .23 

Stacking costs store 3 .83 3 .69 3 .72 3 .55 3 .59 

Backroom costs 6 .73 7 .27 5 .85 6 .25 6 .16 

Total 30 .40 31 .33 29 .61 28 .80 28 .69 

Average Q or MOQ 8 .46 10 .87 7 .09 7 .84 7 .31 

Maximum Q or MOQ 35 216 26 30 36 

Store shelf 
stacking costs

3.55

-13.5%
-14.0%

-3.8%
-28.3%

+9.6%

-2.0%

Store 
backroom costs

6.25

7.27

3.69

Unpacking costs

2.23

3.11

DC Picking 
Costs

7.10
6.48

Penalty Costs

2.922.98

Holding Costs

6.75

7.80

Op�mal (D)
Pure SCC-1 (B)

Fig. 6. Detailed cost comparison between the standard configuration SCC-1 (B) and the optimal solution (D). 
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Inventory carrying costs: The largest absolute cost effect (€1.05,

i.e., 13.5%) results from inventory holding in the stores. Unpacking

CPs and creating smaller MOQs results in an increasing delivery

frequency per SKU with less average capital tied up in in-store

inventories. In scenario D for SKUs unpacked in the DC and which

exhibit a smaller MOQ than their corresponding CP, the number of

order lines increases by 38% on average. 

Unpacking costs: Selection of the unpacking location has a

major impact on unpacking costs. As expected, unpacking costs

are significantly lower when a large proportion of unpacking

is performed at the DC, where unpacking operations can be

standardized to a higher degree than in the stores. In the SCC-2

scenario (C), unpacking costs are 46% below the unpacking costs

in the SCC-1 scenario (B). 

Backroom costs: Considering all cost components, the backroom

costs are very decision-relevant. Of the total backroom costs, less

than 10% is due to backroom storage costs (space costs). The

main factor behind the backroom costs is the number of in-store

replenishments (refilling costs). In the optimal solution, there

are 13.6% fewer in-store replenishments compared to the current

situation. Since the number of in-store replenishments is limited

to 1 trip per review period in the numerical study (for 99% of the

store-SKU combinations in the dataset), increasing the backroom

inventory (by increasing MOQ) beyond a certain level has no

further effect on backroom handling costs. 

Shelf-stacking costs: The effect of changing the SCC on shelf-

stacking costs is the fourth largest. The results are driven by the

effect that using CP instead of CUs reduces the average number

of order lines and therefore shelf-stacking occurs less often.
onsequently, shelf-stacking costs make up a larger proportion in

he SCC-2 (C) than in the SCC-1 (B) scenario. Fig. 7 shows the

roportional costs per scenario. 

Service constraint approach: The entire analysis for the model

as repeated with a service constraint instead of a cost-

inimization approach. The results are shown in Table 6 . The

ptimal solution shows lower overall costs than in Table 5 due

o the absence of penalty costs. The reduction in total costs com-

ared to the cost-optimized service model was not proportional

o the reduction of the penalty cost in that scenario, but remained

igher. Due to replacing the penalty cost with a service constraint,

he other costs drivers are no longer balanced against out-of-stock

ased on penalty costs, resulting in relatively higher costs for

olding, picking, and backroom. 

.2. Structural considerations of the results 

Proportion of SCCs and CP sizes: Shifting the focus from the cost

erspective to the structure of the optimal solution, it is evident

hat significant volumes are unpacked in the DC in the optimal

cenario D. Compared to SCC-1 (B), 912 SKUs (71%) are changed

o SCC-2 in the optimal solution (D), while 367 (29%) remain

nder SCC-1. In Scenario E, 72% of the store-SKU combinations

re allocated to SCC-2 and unpacked in the DC, while 28% are

ssigned to SCC-1 and picked in CPs (see Fig. 8 ). One quarter of

he SKUs considered is supplied in CPs as well as in CUs while

5% is distributed to all stores in an identical picking unit. 

The small parts picking system at the DC favors generally order

izes of less than 7 CUs compared to the CP picking system. Given



R.A.C.M. Broekmeulen et al. / European Journal of Operational Research 259 (2017) 84–99 95 

 

24.7%
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23.4%

C

29.61
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A

30.40

22.1%

12.6%

24.9%

19.8%

12.6%

B

31.33

23.2%

11.8%

9.9%

20.7%

10.1%

23.4%

D

28.80

21.7%

12.3%

Holding Costs

100%

Unpacking costs
6.3%

Store shelf stacking costs

DC Picking Costs
29.5%

9.8%

22.1%

10.6%

22.2%

9.8%

Store backroom costs

22.6%

E

28.69

21.5%

12.5%

7.8%

24.8%

7.7%

Penalty Costs

Fig. 7. Proportional costs of the scenarios. 
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Fig. 8. Proportions of SCC-1 and SCC-2 and average CP and MOQ sizes. 

Table 6 

Results of the scenario analysis with a service constraint of 99%. All costs are in €/day 

for an average store for all SKUs considered. 

Current (A) SCC-1 (B) SCC-2 (C) Opt (D) LB (E) 

Holding costs 7 .36 8 .28 6 .77 7 .02 6 .97 

Picking costs at DC 6 .74 6 .48 8 .71 7 .25 7 .20 

Unpacking costs 3 .23 3 .11 1 .86 2 .16 2 .18 

Stacking costs store 3 .83 3 .69 3 .63 3 .52 3 .54 

Backroom costs 7 .85 8 .37 6 .67 7 .01 6 .94 

Total 29 .01 29 .94 27 .64 26 .95 26 .84 



96 R.A.C.M. Broekmeulen et al. / European Journal of Operational Research 259 (2017) 84–99 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Cu
m

ul
a�

ve
 sa

vi
ng

s (
%

)

36%

SKUs that favor SCC-2 in scenario D (%)

54%

Cumula�ve savings compared to scenario B

Cumula�ve savings compared to scenario A
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the large range of MOQs in the results for SCC-2, SCC-2 seems to

be unsuitable for all SKUs. In the optimal solution (D), the average

CP size of the SKUs that remain in SCC-1 is 12.04, while the

average MOQ in SCC-2 is 6.32. The relatively low MOQ in the op-

timal solution confirms the observation that SCC-2 is particularly

interesting for SKUs that can efficiently be supplied in relatively

small order sizes. In tendency, other things being equal, the larger

the necessary order sizes resulting from customer demand rather

than from the picking unit size, the smaller the relative impact

on those costs that are influenced by CP or MOQ size, e.g., when

in-store replenishments cannot be avoided in any configuration. 

In 70.8% of all store-SKU-combinations that favor SCC-2 in

the optimal scenario (D) the resulting MOQ is smaller than the

corresponding case pack – as expected. However, in 29.2% the

MOQ is larger than the corresponding CP. This is in our setting

the result of two effects. First, if there is ample shelf space, the

available shelf space is used completely and order lines are re-

duced by breaking down CPs and enlarging corresponding MOQs.

Second, the effect arises for products with high sales, which have

to be refilled from the backroom once per review period in any

configuration. This situation also drives order line reduction by

increasing the MOQ compared to the corresponding CP. 

Favorable products for SCC-2: The large savings reported in this

study can only be realized by switching SKUs to a small parts

picking system at the retail DC. These systems require considerable

investments and companies might be reluctant to invest in these

systems. Fig. 9 shows that 10% of the SKUs with the highest sav-

ings for all stores when allocated to SCC-2 in scenario D already

contribute to 54% of the savings for product unpacking at the DC

compared to scenario B (no unpacking at all). Compared with the

specific situation of DELTA (scenario A), unpacking just the most

favorable 10% results in savings as high as 36%. 

As expected, the greatest savings tend to result from SKUs with

large CP sizes compared to the available shelf space. The 10% most

favorable SKUs for switching to SCC-2 are especially SKUs whose

CP size significantly exceeds the allocated shelf capacity, often by a
ultiple thereof. The most favorable products for unpacking result

n a MOQ in SCC-2 that is much smaller than the original CP size

nd often are significantly below the shelf capacity. These favor-

ble 10% are not just slow-moving articles. On average, mean sales

f these first 10% of SKUs are 35% higher than the average sales

f all products. This higher than average sales also explains the

reat impact on total costs. Store deliveries with the corresponding

maller order sizes in SCC-2 and higher frequencies are expected

o fit on the shelf completely. In short, the most attractive SKUs

or SCC-2 are products with the highest possible sales and compar-

tively very large CPs, which get MOQs (with corresponding order

izes) that fit on the shelf completely at the point of delivery. 

.3. Sensitivity analyses 

As not all SKUs are carried in all stores, the analysis was

epeated with the data set limited to only those 1135 SKUs that

re in the assortment of all five stores. The cost reduction of the

ptimal solution compared to the current situation in this case is

.4%, which is only slightly higher because the leverage effect over

ore stores is larger. The percentage of SKUs assigned to SCC-2

emains at 71%. 

To assess the robustness of the optimal solution (D), a sensi-

ivity analysis was carried out for the cost-optimal service model

ased on the main parameters defined for this case example:

roduct value, DC unpacking costs, store labour costs and picking

ime per CU in the small parts DC. The results of these sensitivity

nalyses are shown in Fig. 10 . It is evident that a change in prod-

ct values or store labour cost factors has a comparatively major

mpact on total costs and a minor impact on SKU assignment.

herefore, small cost changes do not significantly change the

ssignment decision. 

In contrast, a change in DC unpacking costs, and even more

ignificantly in the picking time required per CU, impacts SKU

ssignment considerably, but has a relatively minor effect on

otal costs. In these situations, a task shift between the DC and
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Fig. 10. Sensitivity analysis. 
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store. 
tore takes place. For example, due to rising picking costs in

he small parts area, unpacking advantages in the DC decrease.

herefore, with rising picking costs, an increasing number of SKUs

re unpacked at the store (SCC-1) since the costs of the store

omain, especially additional backroom handling, are lower than

he costs of the DC domain, i.e., the combination of DC unpacking

nd picking, resulting in fewer SKUs being assigned to SCC-2 and

ice versa. This result can also be explained by the fact mentioned

bove that few SKUs account for large proportions of the savings

n unpacking and many SKUs show only minor effects, meaning

hey are likely to switch back to SCC-1 in the event of rising

C costs. The greater insensitivity of SKU assignment on store

abour compared to picking is, among other aspects, a result of

he considerably lower base cost level assumed in this study and

he tight shelf-space restrictions: Even the possibility of MOQ

izing per store will frequently not eliminate backroom handling,

ince shelf capacity is too small to guarantee the service aspired.

owever, overall, the optimal solution can be characterized as

eing stable, at least in the parameter range of ±20%. 

.4. Assessment of alternative approaches 

In this subsection, two alternative approaches are assessed

hat might be also relevant for retail decision makers, i.e., the

pplication of the ( R , s , nQ ) policy also for unpacked products that

re picked and transported in CUs and the case, in which suppliers

lready provide ideally suited CP sizes. 

DC unpacking, but application of the ( R , s , nQ ) policy: Most

etailers like DELTA use an automatic store ordering system that

s based on the ( R , s , nQ ) policy instead of ( R , s , S ). For these re-

ailers, it is interesting to identify the loss in efficiency which they

ust take into account when adhering also to this policy in an
CC-2 setting. In this situation, the optimal, store-specific MOQ is

alculated and this value is used for store ordering decisions based

n the ( R , s , nQ ) policy, Q = MOQ . The difference in cost when ( R ,

 , nQ ) instead of ( R , s , S ) is applied store-specifically under SCC-2

s only 0.3% for all SKUs. Note that the number of SKUs using

CC-2 in the optimal solution then drops from 912 to 894 SKUs.

his is in line with the findings of Zheng and Chen (1992) , who

how that the cost improvement of an ( R , s , S ) policy over an ( R , s ,

Q ) policy is relatively small. For retail operations managers, this

eans they can gain most of the positive effects of DC unpacking

ithout switching to a different replenishment doctrine. 

Effect of optimized supplier CP sizes: An alternative approach for

btaining positive findings would be to convince suppliers to sup-

ly DELTA with a newly designed CP (of size Q 

∗), which is optimal

or the current set of stores (one size for all stores). To obtain

n initial impression, this scenario is examined without including

esign restrictions on the new CP (e.g., weight, dimensions) or the

osts to the supplier of offering this specific CP. For the retailer,

t would mean that the DC is supplied with cost-optimal CPs, all

KUs are assigned to SCC-1 and unpacking is performed entirely

n the store level. This alternative solution would require changing

he CP size for 1101 SKUs compared to SCC-1 (B) and for 1095

KUs compared to the current situation (A). In this scenario, with

otal costs of €29.49, a cost reduction of 5.9% is achieved compared

o SCC-1 with the existing CP sizes (B), which falls between the

urrent situation (A) and the optimal solution (D). This result is in

ine with the results reported by Wensing et al. (2016) . However,

hen compared to the cost reduction of 8.1% between SCC-1 with

urrent CP sizes (B) and the optimal solution (D), the difference

s remarkable. It arises from the fact that DC unpacking makes

t possible to adjust and apply the MOQ specifically for each
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7. Conclusion and areas for future research 

In this paper, a novel approach is presented for identifying

the optimal product unpacking location in a classical bricks-and-

mortar retail supply chain, i.e., either the DC or store, this being

the standard configuration for many modern retail companies.

Based on the ( R , s , nQ ) and ( R , s , S ) ordering policies, expressions

for specific cost drivers are developed and applied, which are

decision-relevant for evaluating and optimizing the effect on cost

of supplying stores using an external supplier CP (SCC-1) or, if

unpacked in the DC, a store-specific MOQ (SCC-2). Using these

expressions, this research shows that unpacking the CP provided

by the supplier in the retail DC can lead to considerable savings.

These savings are a result of fewer backroom operations and the

shifting of inefficient manual operations from the store to the

technically supported operations in the DC. 

The developed comprehensive model integrates all decision-

relevant processes along the internal retail supply chain from

the DC to the shelf. The objective function of the optimization

approach comprises seven relevant cost components: DC picking

costs, unpacking costs (either in DC or store), store inventory

holding costs, store shelf-stacking costs, backroom storage costs,

in-store replenishment costs from the backroom and, when ap-

plying the cost-optimal service model, penalty costs. With these

costs and associated processes, the model reflects the practical

necessity of balancing requirements at both the DC and the stores,

which is a major concern of retail operations officers ( Kuhn &

Sternbeck, 2013 ). The model takes several aspects specific to retail

into account, which are necessary for getting a clear picture of the

interdependencies and achieving applicability in the real world.

These aspects are, for example, different picking costs depending

on the picking system used, limited shelf space derived store-

specifically from planograms, backroom operations, and in-store

replenishment processes. A comprehensive analysis of the process

interdependencies through close cooperation with a major retail

company was therefore a relevant preparatory task for ensuring

the integration of practical requirements. 

The applicability of the suggested approaches is demonstrated

by an extensive numerical study, which is based in part on empiri-

cal data from a large, European home and personal care retail com-

pany. Compared to the standard configuration of using the supplier

CP as the picking unit in the DC, the optimal solution generated by

the model saves 8.1% of total relevant costs. Transferred to DELTA’s

current situation, applying the model reduces total relevant costs

by 5.3%, or the equivalent of several million euros a year. Of course,

DC unpacking and picking capacities have to be available to realize

these savings. However, the numerical example demonstrates that

unpacking the most favorable 10% of the SKUs already achieves

over half of the potential savings compared to using the CP exclu-

sively. Identifying those products which best fill up available ca-

pacities requires an analytical model. The model presented in this

paper can be directly applied to answer this question. The method

is user-friendly because it is relatively easy to implement, can be

solved fast, and is based on data that is accessible in practice. 

In summary, we agree with Ketzenberg et al. (2002) that

breaking up bulk deliveries at the DC has a positive impact on

the operations of a retail supply chain. However, contrary to their

findings, this research found that the MOQ must be set higher

than one in all cases due to the significant order line costs, even

with a dedicated small parts picking system at the DC. This

modelling and solution approach contributes to further improving

the balance between operations at the DC and the stores, and

therefore to achieving comprehensive retail efficiency. 

This study considers the unpacking decision from a compre-

hensive retail supply chain perspective and therefore also serves

as starting point for future research: 
(a) The current design of the model assigns exclusively each

SKU or store-SKU combination to exactly one SCC. However,

there are some indications that a combination of the ap-

proaches could be beneficial, at least in some cases. This

would imply that store orders per SKU could be composed

of CPs and CUs simultaneously. Future research could

examine the underlying cost potential. 

(b) The developed expressions are only used to evaluate two

SCCs. In future research, these expressions could provide a

basis for answering other related questions. For example,

because shelf capacities are highly relevant for retail pro-

ductivity, the unpacking decision is closely related to the

field of category management and assortment selection. The

number of listed products impacts the use of available shelf

space and influences the degree of freedom in shelf-space

planning (see Hariga et al., 2007 ). In particular, the combin-

ing of planogramming with the DC unpacking decision may

offer additional potential. 

(c) Currently, this approach is designed as a tactical model

based on stationary product demand data. In practice,

however, demand is often non-stationary and it may be

beneficial to plan unpacking operations in advance based

on forecasting and product lifecycle data. Non-stationary

demand would modify the optimization problem since it

requires the integration of dynamic aspects. 

(d) The model, although designed to answer tactical questions,

could be modified to support long-term retail investment

decisions. One promising possibility would be to adapt our

approach to help answer the strategic question of whether

to invest in unpacking and small parts picking systems,

and if so, to what extent a company should build up its

capacities. 

(e) In future research, the model may be relevant not only to

retailers, but also to cooperation projects between retailers

and the manufacturers responsible for dimensioning CPs,

particularly in the private-label segment. Intercompany pro-

cesses could be integrated into the approach to determine

whether DC unpacking or resizing of the supplier CP is the

best alternative. This cooperation could be accompanied by

a corresponding model for determining how to share the

costs and benefits between business partners. Moreover,

the model could be expanded to assess the introduction of

reusable boxes that circulate between supplier and retailer

and carry products unpacked, meaning that they conserve

energy and resources by eliminating packaging along the

entire process chain. 
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