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asymptotically optimal as the demand potential and capacity grow large and that dynamic pricing

has only a secondary effect on revenues. However, additional revenue improvements through dynamic
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a b s t r a c t

We consider the problem of selling a fixed capacity or inventory of items over a finite selling period.

Earlier research has shown that using a properly set fixed price during the selling period is

pricing can be important in practice and need to be further explored. We suggest two simple dynamic

heuristics that continuously update prices based on remaining inventory and time in the selling period.

The first heuristic is based on approximating the optimal expected revenue function and the second

heuristic is based on the solution of the deterministic version of the problem. We show through a

numerical study that the revenue impact of using these dynamic pricing heuristics rather than fixed

pricing may be substantial. In particular, the first heuristic has a consistent and remarkable

performance leading to at most 0.2% gap compared to optimal dynamic pricing. We also show that

the benefits of these dynamic pricing heuristics persist under a periodic setting. This is especially true

for the first heuristic for which the performance is monotone in the frequency of price changes. We

conclude that dynamic pricing should be considered as a more favorable option in practice.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Pricing is one of the most important decisions that impact a
firm’s profitability. The effect of pricing is more profound for
companies in transportation services sector where it is difficult to
change capacities in the short term and variable costs are small.
Recognizing this, airlines, rental car companies and other firms in
transportation and service industries have begun to implement
techniques to improve their pricing and allocation decisions since
mid 1980s. Following the success of these practices, now broadly
called revenue management, pricing decisions are becoming more
tactical and dynamic pricing is increasingly being adopted in
retail and other industries.

In a seminal work, Gallego and van Ryzin [1] (GvR hereafter)
study the problem of dynamically pricing a fixed stock of items
over a finite horizon under uncertain demand. An important
result in GvR is that keeping the price constant (at a level
determined by the deterministic solution of the problem)
throughout the horizon has a bounded worst-case performance
and is asymptotically optimal as the expected sales goes to
infinity. GvR also show numerically that when the demand
function is exponential, fixed-price policies have good perfor-
mance even when the expected sales is small. The authors
ll rights reserved.
conclude that ‘‘yoffering multiple prices can at best capture only
second-order increases in revenue due to the statistical variability
in demand’’. Since 1994, a large and important body of literature
in operations research has evolved to offer solutions and study
different variants of the problem studied in GvR. (Recent exam-
ples include research that study the impact of product substitu-
tion [2], consumer inertia [3] and competition and price
uncertainty [4] on dynamic pricing. See [5–7] for extended
reviews of earlier literature.) Although GvR caution that these
second-order increases in revenue may be significant in practice,
revenue management literature has remained relatively silent on
quantifying the benefits of dynamic pricing over fixed-price
policies. This is primarily due to practical convenience: comput-
ing optimal dynamic prices is difficult (if not impossible) and
changing prices frequently may be undesirable or costly.

Our primary aim in this paper is to reemphasize the power of
dynamic pricing under resupply restrictions. We suggest two
computationally simple dynamic pricing heuristics and show that
the performance of these heuristics can be significantly better
than that of fixed-price policies. In particular, we first propose the
revenue approximation heuristic which is based on approximating
the expected revenue of the optimal policy in order to calculate
the price to be applied for a given remaining inventory and
remaining time in the selling season. The approximation is a
combination of a lower bound based on the homogeneity of the
optimal expected revenue and an upper bound based on the
deterministic version of the problem. The second heuristic we
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Table 1
The demand functions that are used in the analysis.
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1 Wð:Þ denotes the principal branch of the Lambert W function, which is the

inverse of the function f ðwÞ ¼wew . The numeric value of Wð1=eÞ is approximately

0.27846.

A. S- en / Omega 41 (2013) 586–597 587
suggest is the dynamic run-out rate heuristic which adaptively
uses the solution of the deterministic version of the problem. We
carry out an extensive numerical study which shows that the
revenue gap between fixed-price and optimal dynamic pricing
policies may be substantial and this gap worsens when the season
length (or demand potential) increases. We show that the two
heuristics that we propose close a significant portion of this gap
and lead to near-optimal expected revenues. We also show that
most of the benefits of dynamic pricing heuristics are sustained
by changing the prices periodically rather than continuously. For
the first heuristic, the performance is monotone in the number of
periods used. Our analysis and results are confined to the benefits
of dynamic pricing under ‘‘normal’’ statistical fluctuations in
demand. The benefits of dynamic pricing will be more pro-
nounced when the demand is non-homogeneous or when the
demand function or distribution is not known in advance.

Among the relevant works in the literature, Gallego and van
Ryzin [8] extend their model to the multiple products case and
demonstrate that two heuristics that are similarly based on the
solution of the deterministic version of the problem are asympto-
tically optimal. Cooper [9] proves asymptotical convergence results
that are stronger than those in GvR and [8]. Cooper [9] also presents
an example where updating prices (more precisely, the allocations
in Cooper’s model) by resolving the deterministic problem through-
out the horizon, a widely applied approach in practice, may perform
worser than applying the static policy. Secomandi [10] establishes
the conditions under which resolving does not deteriorate the
performance of heuristic pricing policies. Maglaras and Meissner
[11] show that resolving heuristics are also asymptotically optimal
as starting inventory and expected sales both go to infinity and
Cooper’s example should not persist in problems with large
demand potential. There is limited research on developing dynamic
pricing heuristics and those that are suggested are usually based on
deterministic formulations. The main contribution in this paper is
to propose two new heuristics that are simple and computationally
feasible. While dynamic run-out rate heuristic also uses the
deterministic solution in feedback form, revenue approximation
heuristic is based on approximating the revenue-to-go function
using a homogeneity assumption.

The literature also does not provide enough guidance on non-
asymptotic or average performance of heuristic policies and the
factors that moderate their performance. In GvR, the authors use
the exponential price sensitivity of demand and conduct a small
numerical experiment to study the performance of the fixed-price
policy against the optimal dynamic policy. It is shown that the
revenue gap between the fixed-price and dynamic pricing policies
is smaller than the theoretical bounds and gets smaller as starting
inventory increases. However, Zhao and Zheng [12] show that the
revenue gap is more significant when the constant demand
elasticity function is used rather than the exponential demand
function. Zhao and Zheng [12] also show that the revenue gap is
rather insensitive to the elasticity of demand and there are
diminishing marginal returns of dynamic pricing policies to the
number of prices used. Maglaras and Meissner [11] conduct a
numerical study on the multiproduct pricing problem with a
linear demand function. Their results show that the fixed-price
policy’s regret over the optimal dynamic policy can be substantial
and resolving the deterministic problem periodically during the
horizon can offer significant benefits. In Section 3, we provide
the results of an extensive numerical experiment to study the
performance of heuristic pricing policies. The results show that
the regret of fixed-price policies can be important in practice and
dynamic pricing heuristics can be used to generate near-optimal
results.

The remainder of this paper is organized as follows. In Section 2,
we propose the revenue approximation and dynamic run-out rate
heuristics. In Section 3, we report the results of a detailed numerical
study that quantifies the regrets of fixed-price and dynamic pricing
heuristics over the optimal dynamic pricing policy. This section also
analyzes the effect of periodic price changes on the performance of
dynamic pricing heuristics. We conclude in Section 4.
2. Dynamic pricing heuristics

We first state our problem following the notation in GvR and
provide some preliminary results. A given stock of n items is to be
sold over a finite season of length t. The demand rate depends
only on the current price p through a function lðpÞ, whose inverse
is pðlÞ. The revenue rate, denoted by rðlÞ ¼ lpðlÞ, is assumed to
satisfy liml-0rðlÞ ¼ 0, and is continuous, bounded, concave and
has a least maximizer denoted by ln

¼minfl : rðlÞ ¼maxlZ0rðlÞg
(the corresponding price is pn ¼ pðln

Þ). There exists a null price
denoted by p1 for which limp-p1lðpÞ ¼ 0. The price is selected
from a set of allowable prices P ¼Rþ [ p1. The corresponding set
of allowable rates is denoted by L¼ flðpÞ : pAPg.

For the numerical examples and experiments in this paper, we
use three different functions to model the price–demand relation-
ship: exponential, linear and logit demand functions. These are
some of the most commonly used demand functions in theory
and practice [7,13] and are given in Table 1.1

The demand is stochastic and modeled as a Poisson Process.
The firm controls the intensity at every instant by using a price in
P. The problem is to determine the pricing policy that maximizes
the total expected revenue over the season denoted by Jnðn,tÞ.

For a given remaining time s and inventory x in the season,
GvR show that the optimal expected revenue-to-go (and the
corresponding optimal price at that instant) can be found by
solving the following system of differential

@Jnðx; sÞ

@s
¼ sup

l
frðlÞ�lðJnðx,sÞ�Jnðx�1,sÞÞg, for all x¼ 1,2, . . . ,n,

ð1Þ

with boundary conditions Jnðx,0Þ ¼ 0 for all x¼ 1,2, . . . ,n and
Jnð0,sÞ ¼ 0 for all srt. GvR also prove the existence of a unique
solution to (1) along with monotonicity of the optimal expected
revenue (and corresponding demand rates and prices) with
respect to remaining inventory and remaining time in the season.

GvR state that obtaining a solution to (1) is quite difficult – if not
impossible – for arbitrary demand functions. In addition, imple-
menting a pricing policy that would change the price continuously
over time may be difficult in practice. Therefore, they suggest the
use of a heuristic pricing policy in which the price is constant for
the entire season. The fixed-price (FP) heuristic that they develop
uses the solution of the deterministic version of the problem and
sets the price at p ¼ pðlÞ ¼ pðminfl0,ln

gÞ, where l0
¼ n=t is the run-

out rate and ln is the revenue maximizing rate. One can improve
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upon this by using the optimal fixed-price (OFP) heuristic and setting
the price to pOFP ¼ arg maxppE½minfn,NlðpÞðtÞg� where NlðpÞðtÞ is a
Poisson random variable with rate lðpÞt. GvR shows that both
heuristic are asymptotically optimal as n and lnt (or demand
potential) both go to infinity. In the remainder of the section, we
suggest two computationally simple heuristics that can be used to
dynamically adjust prices.

2.1. Revenue approximation heuristic

The main idea behind our first heuristic approach is to
approximate the optimal expected revenue function Jn with a
proper function, say ~J , and use this approximation in (1) to find

lRAðx,sÞ ¼ arg sup
l
frðlÞ�lð~Jðx,sÞ�~Jðx�1,sÞÞg: ð2Þ

This is similar to the approximate dynamic programming
approach used in [14] and [15] to calculate bid prices for network
revenue management by approximating the value function in
Bellman equation. Zhang and Cooper [16] use a similar approach
to determine prices in a revenue management problem with
substitutable flights. Our approach differs from theirs as we use
a new way to approximate the value function and consider a
continuous time dynamic program (thus use approximation in
the Hamilton–Jacobi optimality condition). We first develop a
lower bound and an upper bound for the value function and then
use a combination of these bounds to approximate the value
function.

2.1.1. Lower bound

The lower bound we develop is based on the following
intuitively appealing argument: The optimal expected revenue
that can be obtained by selling x units of remaining inventory
over a remaining season of length s is approximately equal to x

times the optimal expected revenue that can be obtained by
selling one unit of inventory over a season of length x=s, i.e.,

~JHðx,sÞ ¼ x Jnð1,s=xÞ:

This approximation would be exact only if the optimal
expected revenue function was positively homogeneous, i.e.,
Jnðx,sÞ ¼ x Jnð1,s=xÞ. As we show next, this is not the case and the
expected revenue obtained through this approximation is a lower
bound for the optimal expected revenue.

Theorem 1.

~JHðx,sÞ ¼ xJnð1,s=xÞr Jnðx,sÞ, 8x40:

Proof. Consider the pricing policy for x units of inventory to be
sold over a remaining season of length s. The remaining season is
split into x periods, each having length s=x. In each of these
periods, one additional inventory is put on sale along with any
leftover inventory from the previous period. In each period, the
intensity at time w is set to ln

ð1,ðs=xÞ�wÞ. Since Jnð1,s=xÞ is the
expected revenue of this policy in one of these periods without
considering the leftover inventory, there is a positive probability
(which is equal to or larger than emxðsÞ where mxðsÞ ¼

R s=x
0

ln
ð1,ðs=xÞ�wÞdw) that there will be leftover inventory at the end

of a given period, and the prices are non-zero, the expected
revenue resulting from this pricing policy is at least xJnð1,s=xÞ. &

Fig. 1 shows the percentage gap between the lower bound and the
optimal solution given by

100�
Jnðx,sÞ�~JHðx,sÞ

Jnðx,sÞ

for the exponential, linear, and logit demand functions for
x¼ 2,5,10. We take a¼e for the exponential, ða,bÞ ¼ ð2,1Þ for the
linear and ða,bÞ ¼ ð1þe�Wð1=eÞ�1=e�Wð1=eÞ�1,Wð1=eÞþ1Þ for the logit
demand functions leading to pn ¼ ln

¼ 1 for all demand functions.
The gaps tend to be small for small s, but increase rapidly to

their peak at moderate x values and then stabilize. We see a
similar pattern for different parameter values as well.

The lower bound requires the calculation of Jnð1,sÞ using a
single differential equation

@Jnð1,sÞ

@s
¼ sup

l
frðlÞ�lJnð1,sÞg: ð3Þ

Remember that obtaining the optimal policy requires solving the
system of differential equations given in (1). Therefore, obtaining
the lower bound is much simpler compared to the optimal policy.
For x¼1, the lower bound coincides with the optimal expected
revenue, i.e., ~JHð1,sÞ ¼ Jnð1,sÞ.

2.1.2. Upper bound

The upper bound we use is the solution of the problem in
which the demand rates are deterministic. In this case, as is
shown in [1], we have:

~JDðx,sÞ ¼ rðlðx,sÞÞs¼ rðminfl0ðx,sÞ,ln
gÞs,

where l0ðx,sÞ ¼ x=s is the run-out rate. As shown below, ~JDðx,sÞ
constitutes an upper bound for the optimal revenue Jnðx,sÞ.

Theorem 2 (Gallego and van Ryzin [1, Theorem 2]).

Jnðx,sÞr ~JDðx,sÞ, 8x40:

2.1.3. Approximation

Since we establish ~JHðx,sÞr Jnðx,sÞr ~JDðx,sÞ in Theorems 1 and 2,
we can obtain better approximations for the optimal revenue
through a combination of ~JHðx,sÞ and ~JDðx,sÞ,

~Jðx,sÞ ¼ yðx,sÞ~JHðx,sÞþð1�yðx,sÞÞ~JDðx,sÞ:

In principal, yðx,sÞ can be fine-tuned for a given demand function,
starting inventory and length of the horizon. For example, Fig. 2
shows the optimal revenue as well as the upper and lower bounds
for the linear demand function with a¼2 and b¼1. As one can
observe, the lower bound is tighter than the upper bound for small
values of starting inventory, but the upper bound better approx-
imates the optimal revenue for larger values of starting inventory.
In Section 3, we use the weights yðx,sÞ ¼ 1=

ffiffiffi
x
p

in a detailed
numerical study. This leads to a heuristic performance within or
around 0.2% of the optimal revenue for all problems we consider.

We now explain how one can compute the intensity and
corresponding prices for the revenue approximation heuristic
for the three demand functions used in this paper.

Exponential demand function: For the exponential demand
function, using (2), we get

lRAðx,sÞ ¼
a

e1þ ~J ðx,sÞ�~J ðx�1,sÞ
: ð4Þ

For the exponential demand function, Jnð1,sÞ ¼ lnð1þlnsÞ (see
GvR). Therefore, we have ~JHðx,sÞ ¼ x lnð1þlns=xÞ. In addition,
~JDðx,sÞ ¼minfx,lnsglnðas=minfx,lnsgÞ. Using these in (4),

lRAðx,sÞ ¼

a

eð1þlnsÞyð1,sÞ as

minf1,lnsg

� �minf1,lnsgð1�yð1,sÞÞ
if x¼ 1,

a 1þ
lns

x�1

� �ðx�1Þyðx,sÞ
as

minfx�1,lnsg

� �minfx�1,lnsgð1�yðx�1,sÞÞ

e 1þ
lns

x

� �xyðx,sÞ
as

minfx,lnsg

� �minfx,lnsgð1�yðx�1,sÞÞ
if xZ2,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

where ln
¼ a=e. The corresponding price is pRAðx,sÞ ¼ lnða=lRAðx,sÞÞ.

Note that the optimal price and intensity can be calculated in
closed form. The optimal price is an increasing (decreasing)



Fig. 1. Percentage gap of the lower bound for pn ¼ ln
¼ 1.

Fig. 2. Upper and lower bounds for the optimal revenue for the linear demand function with a¼2 and b¼1.
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function of the remaining time (inventory) in the season. Corre-
spondingly, optimal intensity is a decreasing (increasing) function
of the remaining time (inventory) in the season.

Linear demand function: For the linear demand function, using
(2), we get

lRAðx,sÞ ¼
a

2
�

b

2
ð~Jðx,sÞ�~Jðx�1,sÞÞ:

In order to find ~JHðx,sÞ, one needs to first calculate Jnð1,sÞ. By
solving (3), we get,

Jnð1,sÞ ¼
a2s

bðasþ4Þ
:

Therefore, we have ~Jðx,sÞ ¼ a2sx=bðasþ4xÞ. In addition,
~JDðx,sÞ ¼minfx,lnsgðas�minfx,lnsgÞ=bs where ln

¼ a=2. Then,
we get

lRAðx,sÞ ¼

a

2
�

a2s yð1,sÞ

2ðasþ4Þ
�

min 1,
as

2

n o
as�min 1,

as

2

n o� �
ð1�yð1,sÞÞ

2s
if x¼ 1,

a

2
�

a2s yðx,sÞx

2ðasþ4xÞ
þ

a2s yðx�1,sÞðx�1Þ

2ðasþ4ðx�1ÞÞ

�

min x,
as

2

n o
as�min x,

as

2

n o� �
ð1�yðx,sÞÞ

2s

þ

min x�1,
as

2

n o
as�min x�1,

as

2

n o� �
ð1�yðx�1,sÞÞ

2s
if xZ1:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð5Þ

The corresponding price is pRAðx,sÞ ¼ a�lRAðx,sÞ=b. Again, the
optimal price and intensity can be written in closed form and
maintain monotonicity properties.
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Logit demand function: For the logit demand function, using (2),
we get

lRAðx,sÞ ¼
a

1þeWðe�bð~J ðx,sÞ�~J ðx�1,sÞÞ�1Þþbð~J ðx,sÞ�~J ðx�1,sÞÞþ1
:

The corresponding price is pRAðx,sÞ ¼ 1
b lnða=lRAðx,sÞ�1Þ. The solu-

tion to the deterministic problem leads to ~JDðx,sÞ ¼ ðmin
fx,lnsg=bÞ ln ððas=minfx,lnsgÞ�1Þ where ln

¼ ae�Wð1=eÞ�1=1þ
e�Wð1=eÞ�1. Unfortunately, however, there is no closed-form repre-
sentation of ~JHðx,sÞ since there is no closed-form solution for
Jnð1,sÞ in (3). Jnð1,sÞ can only be represented as a solution (z) to the
following equation.

Z z

0

1þWðe�by�1Þ

Wðe�by�1Þ ln
1

Wðe�by�1Þ

� �
�by

� � dy¼
ax

b
: ð6Þ

Therefore, all calculations need to be carried out numerically by
obtaining the solution Jnð1,sÞ from (6) to get ~JHðx,sÞ ¼ xJnð1,s=xÞ.
However, the computation burden of the heuristic is much less
compared to obtaining the solutions for Jnðx,sÞ for all x¼1,y,n.

In general, calculating the prices (or intensities) that will be
used for RA heuristic is as difficult as solving the single differential
in (3) and if (3) has a closed-form solution, the prices can also be
represented in closed form.

One can extend the idea used in computing the lower bound to
a class of dynamic pricing heuristics by approximating Jnðx,sÞ with
~JHðx,sÞ ¼ ðx=kÞJnðk,sk=xÞ with kZ1. More generally, one can use a
linear combination of d of these approximations such that
~JHðx,sÞ ¼

Pd
k ¼ 1 akðx=kÞJnðk,sk=xÞ. We performed a preliminary

numerical investigation of the performance of these heuristics
with d41, but since this leads to additional computational
burden and does not necessarily provide a tighter bound in our
numerical study, we only focus on d¼1 and a1 ¼ 1 in this paper.
2.2. Dynamic run-out rate heuristic

The dynamic run-out rate heuristic is a dynamic version of FP

heuristic suggested in GvR. For a given remaining time s in the
horizon and remaining inventory x, the price is set at

pRRðx,sÞ ¼ pðx,sÞ ¼maxfpn,p0ðx,sÞg,

where pn is the revenue maximizing price and p0ðx,sÞ ¼ pðl0
ðx,sÞÞ

with l0
ðx,sÞ ¼ x=s being the run-out rate. Alternatively, this

heuristic sets the intensity at

lRRðx,sÞ ¼ lðx,sÞ ¼minfln,l0
ðx,sÞg:

Note that pRRðx,sÞ is the solution of the deterministic version of
the problem solved when the remaining time in the season is s
Fig. 3. Price paths for optimal and heuristic poli
and remaining inventory is x. Thus, this heuristic is equivalent to
continuously ‘‘resolving’’ the deterministic problem (fluid policy).

It is worthwhile here to note what distinguishes dynamic run-out
rate heuristic (RR) from fixed-price (FP) heuristic. FP heuristic solves
the deterministic problem once only at the beginning of the selling
period when there are n units of inventory and t units of time
remaining. This leads to the price pFPðn,tÞ ¼maxfpn, pðl0

ðn,tÞÞg,
where l0

ðn,tÞ ¼ n=t is the run-out rate. FP does not change this price
during the selling period. RR heuristic, on the other hand, resolves the
deterministic problem at every instant by recalculating run-out rate
l0
ðx,sÞ ¼ x=s for the given remaining time s and inventory x, and sets

the price to pRRðx,sÞ ¼maxfpn,pðl0
ðx,sÞÞg at that instant.

Example price paths: We demonstrate the price paths created by
the optimal and heuristic policies in an example in Fig. 3. There are
n¼5 units of inventory to sell over a horizon of length t¼10. The
average demand rate depends on the price through the function
lðpÞ ¼ 2�p (linear price response function with a¼2 and b¼1). For
this function, we have, pn ¼ ln

¼ 1. FP heuristic sets the price to
pFP ¼ p ¼ pðminfln,n=tgÞ ¼ pðminf1,0:5gÞ ¼ 2�0:5¼ 1:5. One can
determine the price of OFP heuristic by maximizing pE½min
fn,NlðpÞðtÞg� ¼ pE½minf5,N2�pð10Þg�. A numerical procedure can be
used to find pOFP ¼ 1:419305. Dynamic pricing policies adjust the
price as a function of remaining time s and remaining inventory x.

RR heuristic sets the price to pRRðx,sÞ ¼ pðminfln,x=sgÞ ¼ 2�
minf1,x=sg. As explained in Section 2.1, RA heuristic computes a
lower and an upper bound for the revenue-to-go and uses a
combination of these to compute the price. In this example (as
well as in most of other numerical experiments), we use
yðx,sÞ ¼ 1=

ffiffiffi
x
p

as the weight of the lower bound. Using this,
lRAðx,sÞ given in (5) and the fact that pRAðx,sÞ ¼ 2�lRAðx,sÞ, we find

pRAðx,sÞ ¼

1þ
2s

ffiffiffi
x
p

2sþ4x
�

2s
ffiffiffiffiffiffiffiffiffi
x�1
p

2sþ4ðx�1Þ
þ

minfx,sgð2s�minfx,sgÞð
ffiffiffi
x
p
�1Þ

2s
ffiffiffi
x
p

�
minfx�1,sgð2s�minfx�1,sgÞð

ffiffiffiffiffiffiffiffiffi
x�1
p

�1Þ

2s
ffiffiffiffiffiffiffiffiffi
x�1
p if x41,

1þ
2s

2sþ4
if x¼ 1:

8>>>>>>>><
>>>>>>>>:

Finally, the optimal dynamic price pnðx,sÞ can be computed
only numerically by solving the system of differential equations
given in (1).

Sample price paths for optimal dynamic pricing (denoted by
OPT), RA heuristic and RR heuristic are plotted in Fig. 3, as well as the
fixed prices set by FP and OFP heuristics. The horizontal axis
represents the remaining time in the season. The jumps in dynamic
policies correspond to sales (for demonstration, the example
assumes that the sales are realized at the same times for each
policy, although, in reality the realizations depend on the prices
charged and hence could be different for each policy). As is the case
for the optimal dynamic policy, both dynamic pricing heuristics
cies, linear demand, a¼2, b¼1, t¼10, n¼5.



Fig. 4. Price paths for optimal and heuristic policies, logit demand, b¼Wð1=eÞ, a¼ 1þe�Wð1=eÞ�1=e�Wð1=eÞ�1, t¼10, n¼5.
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reduce the price over time between consecutive sales and introduce
an upward jump at each sale (the only exception to this behavior is
when the remaining time in the selling period is less than 1 and
remaining inventory is 1, leading to a constant price pRRð1,sÞ ¼
pðminf1,1=sgÞ ¼ 1 for RR heuristic). The price set by RR heuristic can
be somewhat different from the optimal price. On the other hand,
RA heuristic’s price is always very close to the optimal dynamic
price. In this particular case, the difference pnðx,sÞ�pRAðx,sÞ remains
in the interval ½�0:005017,0:005708�. The optimal expected revenue
for this example is Jnð5,10Þ ¼ 6:4857. Using RA, RR, OFP, FP heuristics
instead generate expected revenues JRAð5,10Þ ¼ 6:4844, JRRð5,10Þ ¼
6:4268, JOFPð5,10Þ ¼ 6:2795, JFPð5,10Þ ¼ 6:1840.

Fig. 4 shows similar price paths for an example with logit price
response function with parameters b¼Wð1=eÞ and a¼ 1þ
e�Wð1=eÞ�1=e�Wð1=eÞ�1 leading to pn ¼ ln

¼ 1. Again, we have five
units of inventory to sell over a selling period of 10 time units. In
this case, FP and OFP heuristics’ prices are very close to each
other; pFP ¼ 1:6441 and pOFP ¼ 1:6439.

The price paths for the optimal dynamic policy and dynamic
heuristics have shapes similar to those in Fig. 3. However, in this
case the range of prices are larger. RA heuristic still follows the
optimal policy closely although not as closely as the case for
linear price response function. Again, RR heuristic may set a price
quite different from what is optimal. The optimal expected
revenue for this example is Jnð5,10Þ ¼ 7:0737. Using RA, RR, OFP,
FP heuristics instead generate expected revenues JRAð5,10Þ ¼
7:0711, JRRð5,10Þ ¼ 6:9535, JOFPð5,10Þ ¼ 6:7782, JFPð5,10Þ ¼ 6:7782.
3. Numerical study

In this section, we analyze the performance of dynamic pricing
heuristics (namely, revenue approximation (RA) and dynamic
run-out rate (RR) heuristics) and compare their performance
against constant price heuristics (namely, fixed-price (FP) and
optimal fixed-price (OFP) heuristics) through a detailed numerical
study. We also attempt to complement the numerical analysis in
GvR for FP and OFP by considering different demand functions and
larger demand potentials. For this purpose, we use exponential,
linear and logit demand functions.

In order to calculate the expected revenue of a given dynamic
pricing heuristic P, we first numerically solve the system:

@JPðx,sÞ

@s
¼ rðlPðx,sÞÞ�lPðx,sÞ½JPðx,sÞ�JPðx�1,sÞ�, for all x¼ 1, . . . ,n,

with initial conditions JPð0,sÞ ¼ 0, 8s and JPðx,0Þ ¼ 0, for all
x¼1,y,n, where lPðx,sÞ is the demand rate set by the heuristic
policy. The expected revenue of using the heuristic policy P then
can be found by evaluating JPðx,sÞ at x¼n and s¼t.

In order to calculate the optimal revenue Jnðn,tÞ, we solve the
system of differential equations (1) numerically. We carried out
these calculations in an advanced numerical mathematics soft-
ware package. For larger problems (especially for larger values of
starting inventory level) or more complex price-response func-
tions, obtaining the optimal policy may be intractable or the
computation times may be prohibitive in a practical setting.

3.1. Performance of fixed and dynamic pricing policies

In Table 2, we report the optimal revenue and performance of
heuristic policies for the exponential demand function when
n¼ 1, . . . ,20 and lnt takes on values 10 or 40. The first four
columns of Table 2 report the optimal expected revenue (Jn) and
the performance of fixed price policies FP and OFP for lnt¼ 10.
These are exactly same as what is reported in Table 1 of GvR. We
extend the numerical study in GvR for a larger demand potential
(lnt¼ 40) in columns 8–10. In addition, we report the perfor-
mance of heuristic dynamic pricing policies. JRR denotes expected
revenue of the dynamic run-out heuristic. JD

RA denotes the
expected revenue of the revenue approximation heuristic when
only the deterministic upper bound is used to approximate the
value function (i.e., yðx,sÞ ¼ 0), JH

RA denotes the expected revenue of
the revenue approximation heuristic when only the lower bound
is used (i.e., yðx,sÞ ¼ 1) and JH

RA denotes the expected revenue
approximation heuristic when weights are set to yðx,sÞ ¼ 1=

ffiffiffi
x
p

(We investigated the use of other weights such as yðx,sÞ ¼ 0:5 or
other functional forms, but these did not lead to better
performance).

When lnt¼ 10, the regrets of FP and OFP heuristics are
relatively small. FP heuristic performs worst at 87.06% for n¼1,
but for larger values of n, the performance is good and approaches
100% when n¼20. OFP heuristic’s worst performance is 94.51%.
Comparing columns 3 and 4 with columns 10 and 11 shows that
both FP and OFP heuristics perform worse for all, but two values
of n when lnt¼ 40 case. Average reduction in performance is
3.15% and 2.85% for FP and OFP heuristics, respectively. Both
heuristics lead to significant optimality gaps when lnt¼ 40. Even
when n¼20, a regret of about four percent remains for both
heuristics. This shows that for a given starting inventory level (n),
increasing the demand potential over the season (increasing ln or
t) reduces the effectiveness of fixed-price heuristics, especially
when the price is not optimized.

In general, dynamic pricing heuristics offer important
improvements over FP and OFP heuristics and generate near-
optimal results. RR heuristic performs better than OFP heuristic
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except five instances and its worst performance is 97.2% when
n¼8 and lnt¼ 10. In contrast to fixed-price heuristics, RR per-
forms better when the demand potential is larger. When lnt¼ 40,
RR has a near-optimal performance with minimum performance
at 99.34%.

RA heuristic has an outstanding performance in all instances. It
performs better than FP, OFP and RR heuristics in all problems,
and its worst performance is as high as 99.84% (when n¼10 and
lnt¼ 10). RA leads to an average of 3.97% and 7.44% improvement
over FP heuristic for lnt¼ 10 and lnt¼ 40 cases, respectively. The
improvement over OFP heuristic is, on the average, 2.22% and
5.23% for these cases. The results in Table 2 also show that
combining the upper and lower bounds when approximating the
Table 2
Performance of dynamic and fixed price heuristics, exponential, a¼e.

n lnt ¼ 10

Jn JFP=Jn JOFP=Jn JRR=Jn JD
RA=Jn JH

RA=Jn JRA=Jn

1 2.3979 0.8706 0.9451 0.9866 0.9122 1.0000 1.0000

2 4.1109 0.9259 0.9468 0.9841 0.9644 0.9767 0.9998

3 5.4279 0.9452 0.9500 0.9817 0.9800 0.9698 0.9998

4 6.4682 0.9535 0.9537 0.9793 0.9862 0.9704 0.9997

5 7.2982 0.9564 0.9578 0.9769 0.9885 0.9745 0.9995

6 7.9609 0.9558 0.9621 0.9748 0.9889 0.9800 0.9993

7 8.4869 0.9523 0.9667 0.9730 0.9883 0.9855 0.9990

8 8.8998 0.9460 0.9713 0.9720 0.9872 0.9903 0.9987

9 9.2190 0.9369 0.9759 0.9724 0.9864 0.9940 0.9985

10 9.4605 0.9248 0.9805 0.9753 0.9865 0.9964 0.9984

11 9.6387 0.9509 0.9847 0.9807 0.9886 0.9978 0.9988

12 9.7662 0.9696 0.9886 0.9863 0.9916 0.9984 0.9992

13 9.8544 0.9821 0.9919 0.9911 0.9945 0.9986 0.9995

14 9.9129 0.9899 0.9946 0.9946 0.9966 0.9986 0.9997

15 9.9500 0.9946 0.9966 0.9969 0.9981 0.9985 0.9998

16 9.9726 0.9973 0.9980 0.9983 0.9990 0.9986 0.9998

17 9.9856 0.9987 0.9989 0.9992 0.9995 0.9986 0.9998

18 9.9928 0.9994 0.9995 0.9996 0.9998 0.9988 0.9998

19 9.9965 0.9997 0.9997 0.9998 0.9999 0.9989 0.9998

20 9.9984 0.9999 0.9999 0.9999 1.0000 0.9991 0.9999

AVG 8.4399 0.9625 0.9781 0.9861 0.9868 0.9912 0.9994

Table 3

Performance of dynamic and fixed price heuristics, linear, a¼ 2, b¼ 1.

n lnt ¼ 10

Jn JFP=Jn JOFP=Jn JRR=Jn JD
RA=Jn JH

RA=Jn JRA=Jn

1 1.6667 0.7206 0.9695 0.9798 0.8811 1.0000 1.0000

2 3.1325 0.8382 0.9674 0.9858 0.9305 0.9857 0.9995

3 4.4164 0.8961 0.9666 0.9892 0.9552 0.9768 0.9997

4 5.5307 0.9311 0.9670 0.9908 0.9700 0.9738 0.9998

5 6.4857 0.9535 0.9682 0.9909 0.9793 0.9750 0.9998

6 7.2917 0.9670 0.9702 0.9899 0.9850 0.9788 0.9997

7 7.9597 0.9729 0.9729 0.9879 0.9880 0.9836 0.9995

8 8.5017 0.9716 0.9762 0.9855 0.9890 0.9885 0.9991

9 8.9306 0.9625 0.9797 0.9835 0.9888 0.9925 0.9986

10 9.2604 0.9448 0.9834 0.9838 0.9887 0.9955 0.9982

11 9.5059 0.9642 0.9871 0.9869 0.9903 0.9974 0.9984

12 9.6821 0.9780 0.9905 0.9907 0.9929 0.9984 0.9990

13 9.8035 0.9871 0.9934 0.9939 0.9953 0.9989 0.9994

14 9.8836 0.9929 0.9957 0.9964 0.9972 0.9990 0.9997

15 9.9340 0.9962 0.9974 0.9979 0.9984 0.9991 0.9998

16 9.9642 0.9981 0.9985 0.9989 0.9992 0.9991 0.9998

17 9.9814 0.9991 0.9992 0.9995 0.9996 0.9991 0.9999

18 9.9908 0.9996 0.9996 0.9997 0.9998 0.9992 0.9999

19 9.9956 0.9998 0.9998 0.9999 0.9999 0.9993 0.9999

20 9.9980 0.9999 0.9999 0.9999 1.0000 0.9994 0.9999

AVG 8.0958 0.9537 0.9841 0.9915 0.9814 0.9920 0.9995
revenue is important. These bounds, when used alone in approx-
imating the optimal revenue (JD

RA and JH
RA), do not lead to a

consistent and comparable performance.
A similar study is carried out for the linear price response

function in Table 3. In particular, we used a¼2 and b¼1 leading
to ln

¼ pn ¼ 1. The performance of FP heuristic in the linear
demand case is generally worse than the case of exponential
demand. For lnt¼ 10, the worst performance is at 72.06% when
n¼1. The OFP heuristic, on the other hand, performs better with
the linear price response function. The worst performance is
96.66% when n¼3. Increasing the demand potential lnt to 40
has a more dramatic effect on FP heuristic in the case of linear
price response function. For all values of n, FP heuristic performs
lnt ¼ 40

Jn JFP=Jn JOFP=Jn JRR=Jn JD
RA=Jn JH

RA=Jn JRA=Jn

3.3327 0.7981 0.9343 0.9976 0.8974 1.0000 1.0000

6.7346 0.8654 0.9365 0.9973 0.9502 0.9759 0.9996

9.3508 0.8938 0.9387 0.9971 0.9687 0.9622 0.9993

11.6799 0.9101 0.9407 0.9969 0.9779 0.9536 0.9993

13.7866 0.9209 0.9425 0.9967 0.9834 0.9481 0.9993

15.7117 0.9286 0.9442 0.9965 0.9870 0.9445 0.9993

17.4834 0.9346 0.9458 0.9963 0.9894 0.9423 0.9994

19.1223 0.9393 0.9473 0.9960 0.9912 0.9412 0.9994

20.6443 0.9431 0.9487 0.9958 0.9925 0.9410 0.9995

22.0619 0.9463 0.9501 0.9956 0.9935 0.9414 0.9996

23.3850 0.9490 0.9514 0.9954 0.9943 0.9424 0.9996

24.6221 0.9513 0.9527 0.9952 0.9949 0.9438 0.9996

25.7803 0.9533 0.9540 0.9950 0.9954 0.9456 0.9997

26.8654 0.9550 0.9553 0.9948 0.9957 0.9478 0.9997

27.8827 0.9565 0.9565 0.9946 0.9960 0.9502 0.9997

28.8367 0.9578 0.9578 0.9943 0.9962 0.9528 0.9997

29.7314 0.9589 0.9590 0.9941 0.9963 0.9557 0.9997

30.5703 0.9599 0.9602 0.9939 0.9964 0.9586 0.9997

31.3567 0.9607 0.9615 0.9937 0.9965 0.9617 0.9997

32.0934 0.9614 0.9627 0.9934 0.9965 0.9649 0.9997

21.0516 0.9322 0.9500 0.9955 0.9845 0.9537 0.9996

lnt ¼ 40

Jn JFP=Jn JOFP=Jn JRR=Jn JD
RA=Jn JH

RA=Jn JRA=Jn

1.9048 0.6554 0.9801 0.9836 0.9039 1.0000 1.0000

3.7508 0.7584 0.9779 0.9861 0.9331 0.9925 0.9990

5.5421 0.8086 0.9762 0.9879 0.9479 0.9843 0.9984

7.2807 0.8399 0.9748 0.9893 0.9572 0.9765 0.9981

8.9678 0.8620 0.9736 0.9905 0.9638 0.9696 0.9981

10.6040 0.8786 0.9726 0.9915 0.9688 0.9634 0.9982

12.1901 0.8918 0.9717 0.9923 0.9728 0.9581 0.9983

13.7265 0.9026 0.9710 0.9930 0.9760 0.9536 0.9986

15.2137 0.9117 0.9704 0.9937 0.9787 0.9500 0.9988

16.6519 0.9195 0.9699 0.9942 0.9810 0.9470 0.9990

18.0415 0.9262 0.9695 0.9947 0.9830 0.9447 0.9992

19.3829 0.9321 0.9692 0.9951 0.9847 0.9431 0.9994

20.6763 0.9374 0.9689 0.9955 0.9863 0.9421 0.9995

21.9221 0.9420 0.9688 0.9958 0.9876 0.9417 0.9996

23.1205 0.9463 0.9687 0.9961 0.9888 0.9418 0.9997

24.2718 0.9501 0.9687 0.9964 0.9899 0.9424 0.9998

25.3764 0.9535 0.9688 0.9965 0.9909 0.9434 0.9998

26.4346 0.9567 0.9690 0.9967 0.9917 0.9449 0.9998

27.4466 0.9595 0.9692 0.9968 0.9925 0.9468 0.9998

28.4130 0.9621 0.9695 0.9969 0.9932 0.9490 0.9998

16.5459 0.8947 0.9714 0.9931 0.9736 0.9567 0.9991
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worse with larger demand potential. For n¼1, the performance
goes down to 65.54%. When lnt is increased from 10 to 40, the
average reduction in performance is about 6.28%. The OFP

heuristic, on the other hand, performs better with lnt¼ 40 for
smaller values of n, and performs worse for larger values of n. The
average reduction in performance is 1.27%. A regret in the range
of 3–4% still remains even for large values of n for both heuristics.

Again, in general, dynamic pricing heuristics offer important
improvements over FP and OFP heuristics and perform close to
optimal. RR heuristic performs better than OFP heuristic except
one instance and its worst performance is 97.98% when n¼1 and
lnt¼ 10. When lnt¼ 40, RR has a near-optimal performance with
minimum performance at 98.36%.

RA heuristic has an outstanding performance for the linear
demand case. It performs better than FP, OFP and RR heuristics for
all instances. Its minimum performance is 99.81% when n¼5 and
lnt¼ 40. RA leads to an average of 5.42% and 12.65% improvement
over FP heuristic for lnt¼ 10 and lnt¼ 40 cases, respectively. The
improvement over OFP heuristic is, on the average, 1.58%, and
2.85% for these cases.

Finally, in Table 4, we report the results for the logit price response
function. We use b¼Wð1=eÞþ1 and a¼ 1þe�Wð1=eÞ�1=e�Wð1=eÞ�1,
again leading to pn ¼ 1 and ln

¼ 1.
The performances of FP and OFP heuristics are usually similar

to what is observed for the exponential price response function.
The worst performances of FP and OFP heuristics for lnt¼ 10 are
85.06% and 94.52%, respectively, when n¼1. Increasing the
demand potential has a negative effect on the performance for
both heuristics. Worst performances go down to 78.27% and
93.50% for FP and OFP heuristics, respectively. On the average,
increasing the demand potential lnt from 10 to 40 reduces the
performance by 3.63% and 2.80% for FP and OFP, respectively.

Once again, dynamic pricing heuristics offer significant
improvements over fixed-price heuristics. RR heuristic performs
better than OFP heuristic in all instances except for three. When
lnt¼ 10, the worst performance of RR heuristic is 97.64%. When
lnt¼ 40, the performance is very close to optimal with minimum
at 99.53%.

RA heuristic has a remarkable performance with the logit price
response function. Once again, it performs better than FP, OFP and
Table 4

Performance of dynamic and fixed price heuristics, logit, b¼Wð1=eÞþ1, a¼ 1þe�Wð1=e

n lnt¼ 10

Jn JFP=Jn JOFP=Jn JRR=Jn JD
RA=Jn JH

RA=Jn JRA=Jn

1 2.2116 0.8506 0.9452 0.9912 0.9046 1.0000 1.0000

2 3.8558 0.9141 0.9475 0.9894 0.9592 0.9771 0.9998

3 5.1587 0.9391 0.9507 0.9874 0.9769 0.9695 0.9998

4 6.2138 0.9518 0.9543 0.9853 0.9846 0.9693 0.9997

5 7.0737 0.9582 0.9582 0.9830 0.9882 0.9730 0.9996

6 7.7727 0.9604 0.9624 0.9807 0.9894 0.9784 0.9994

7 8.3361 0.9588 0.9669 0.9785 0.9894 0.9841 0.9992

8 8.7842 0.9536 0.9715 0.9768 0.9886 0.9892 0.9988

9 9.1339 0.9444 0.9761 0.9764 0.9877 0.9932 0.9985

10 9.4006 0.9307 0.9806 0.9783 0.9876 0.9959 0.9983

11 9.5984 0.9549 0.9849 0.9829 0.9894 0.9975 0.9986

12 9.7404 0.9721 0.9888 0.9879 0.9922 0.9984 0.9991

13 9.8385 0.9836 0.9921 0.9921 0.9948 0.9987 0.9995

14 9.9036 0.9909 0.9948 0.9952 0.9969 0.9987 0.9997

15 9.9449 0.9951 0.9968 0.9973 0.9982 0.9987 0.9998

16 9.9699 0.9975 0.9981 0.9985 0.9991 0.9988 0.9998

17 9.9843 0.9988 0.9990 0.9993 0.9995 0.9988 0.9998

18 9.9921 0.9994 0.9995 0.9996 0.9998 0.9989 0.9998

19 9.9962 0.9998 0.9998 0.9998 0.9999 0.9991 0.9998

20 9.9983 0.9999 0.9999 0.9999 1.0000 0.9992 0.9999

AVG 8.3454 0.9627 0.9784 0.9890 0.9863 0.9908 0.9994
RR heuristics in all instances. The minimum performance is
99.83% when lnt¼ 10 and n¼10. RA heuristic offers an average
performance improvement of 3.97% and 7.99% over FP heuristic
for lnt¼ 10 and lnt¼ 40 cases, respectively. The improvement
over OFP heuristic is, on the average, 2.20%, and 5.15% for
these cases.

In order to better understand the impact of demand potential
on performance of heuristic pricing policies, we provide Fig. 5,
which shows the performance of FP, OFP, RA and RR heuristics as a
function of t for the three demand functions with n¼5 and
ln
¼ pn ¼ 1.
For all demand functions, when t is very small, the perfor-

mance of all heuristics are close to optimal. This is expected since
all four heuristics tend to use an intensity that minimizes the
instantaneous revenue rate and this is optimal. The performance
of FP heuristic first goes down and after t¼ n=ln

¼ 5 (when the
intensity switches from ln to l0) goes back up again. However,
after a threshold, the performance of FP is a decreasing in t. The
performance of OFP heuristic tends to deteriorate as t increases
for an extended range of t values. When t is considerably large,
the performance is rather flat and then increases as t increases. RR

heuristic performs better than FP, but the impact of t is similar for
the initial part. The performance dips at t¼ n=ln

¼ 5. However,
unlike FP, performance of RR is monotone increasing in t after this
point. RA heuristic has a consistently very strong performance for
all demand functions and all values of t again with minimum at
99.8%. It performs better than all heuristics for all demand
functions and all values of t.
3.1.1. Larger problems

The numerical analysis so far shows that FP and OFP heuristics
have important regrets, especially for small and moderate values
of starting inventory. In contrast, dynamic pricing heuristics and
especially RA heuristic, perform very close to optimal dynamic
pricing policy. A critical question is whether these results are
valid when n is larger, as in certain problems experienced in
practice. In order to answer this question, we use a continuous
price version of an example used in GvR (Section 4). Consider a
flight with n¼300 seats on sale t¼360 days prior to departure. If
Þ�1=e�Wð1=eÞ�1.

lnt ¼ 40

Jn JFP=Jn JOFP=Jn JRR=Jn JD
RA=Jn JH

RA=Jn JRA=Jn

3.2896 0.7827 0.9350 0.9985 0.8951 1.0000 1.0000

6.0291 0.8533 0.9377 0.9983 0.9473 0.9770 0.9995

8.4433 0.8837 0.9400 0.9982 0.9660 0.9634 0.9992

10.6244 0.9015 0.9421 0.9980 0.9755 0.9545 0.9992

12.6229 0.9135 0.9439 0.9979 0.9813 0.9484 0.9992

14.4706 0.9223 0.9455 0.9978 0.9851 0.9442 0.9992

16.1896 0.9291 0.9470 0.9976 0.9877 0.9414 0.9993

17.7959 0.9346 0.9484 0.9975 0.9897 0.9396 0.9994

19.3019 0.9391 0.9498 0.9973 0.9912 0.9387 0.9994

20.7173 0.9429 0.9510 0.9972 0.9924 0.9385 0.9995

22.0500 0.9461 0.9522 0.9970 0.9934 0.9389 0.9996

23.3063 0.9489 0.9534 0.9969 0.9941 0.9398 0.9996

24.4919 0.9514 0.9546 0.9967 0.9947 0.9411 0.9997

25.6112 0.9536 0.9557 0.9965 0.9952 0.9428 0.9997

26.6684 0.9555 0.9568 0.9964 0.9956 0.9449 0.9997

27.6670 0.9572 0.9580 0.9962 0.9959 0.9472 0.9998

28.6100 0.9588 0.9591 0.9960 0.9962 0.9498 0.9998

29.5003 0.9601 0.9602 0.9958 0.9964 0.9526 0.9998

30.3402 0.9613 0.9613 0.9956 0.9965 0.9555 0.9998

31.1320 0.9624 0.9625 0.9953 0.9966 0.9586 0.9998

19.9431 0.9279 0.9507 0.9970 0.9833 0.9508 0.9996



Fig. 5. Performance of fixed price heuristics, n¼5, pn ¼ ln
¼ 1.

Table 5
Performance of pricing heuristics for large n and t.

Demand function n t Jn JFP JFP=Jn JOFP JOFP=Jn JRR JRR=Jn JRA JRA=Jn

Exponential 300 360 $71,766 $70,367 0.9805 $71,435 0.9954 $71,633 0.9981 $71,749 0.9998

300 720 $119,306 $117,262 0.9829 $117,306 0.9832 $119,254 0.9996 $119,303 1.0000

150 180 $35,785 $34,840 0.9736 $35,546 0.9933 $35,668 0.9967 $35,770 0.9996

150 360 $59,372 $58,059 0.9779 $58,088 0.9784 $59,321 0.9991 $59,369 0.9999

Linear 300 360 $75,307 $74,592 0.9905 $75,101 0.9973 $75,213 0.9988 $75,280 0.9996

300 720 $114,643 $112,743 0.9834 $112,936 0.9851 $114,611 0.9997 $114,639 1.0000

150 180 $37,549 $36,961 0.9843 $37,376 0.9954 $37,459 0.9976 $37,525 0.9994

150 360 $57,033 $55,822 0.9788 $55,956 0.9811 $57,002 0.9995 $57,030 0.9999

Logit 300 360 $72,582 $71,146 0.9802 $72,289 0.9960 $71,897 0.9906 $72,557 0.9997

300 720 $118,293 $116,285 0.9830 $116,290 0.9831 $118,192 0.9991 $118,290 1.0000

150 180 $36,191 $35,226 0.9733 $35,971 0.9939 $35,590 0.9834 $36,171 0.9995

150 360 $58,861 $57,575 0.9782 $57,579 0.9782 $58,760 0.9983 $58,859 1.0000
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the price is p1 ¼ $198, the demand rate is l1 ¼ 1 passenger per
day. If the price is p2 ¼ $358, the demand rate is l2 ¼ 0:5
passenger per day. These data points correspond to parameters
a¼2.35790 (and a scaling factor a¼ 0:004332),
ða,bÞ ¼ ð518=320,1=320Þ, and ða,bÞ ¼ ð3:87534,0:00533Þ for the
exponential, linear and logit demand functions, respectively. The
expected revenues for the optimal policy and FP, OFP, RR and RA

heuristic are provided in Table 5. For each demand function, we
also provide results for three other problems in which, (i) the
period length is twice, (ii) the initial inventory and the period
length are half, (iii) the initial inventory is half, of those of the
original problem.

As expected, the performances of FP and OFP heuristics are
better since the expected sales is larger than the problems
considered in Tables 2–4. However, the performance of FP

heuristic varies around 97–98%. When the expected sales is not
large compared to starting inventory, i.e., when ðn,tÞ ¼ ð300,360Þ
or ðn,tÞ ¼ ð150,180Þ, using OFP heuristic instead leads to signifi-
cant improvements and near-optimal performance. However,
when the expected sales is larger, i.e., when ðn,tÞ ¼ ð300,720Þ or
ðn,tÞ ¼ ð150,360Þ, OFP heuristic provides only slight improvements
over FP heuristic and its performance remains around 98%. RR and
RA heuristics offer important improvements over fixed-price
heuristics for these problem instances. RR performs better than
OFP heuristics in all but two instances. RA heuristic, on the other
hand, has a truly outstanding performance. It performs better
than other heuristics in all instances and very close to optimal,
with a maximum regret of 0.06%. We believe that the additional
revenue gains in the range of 2–3% over FP and OFP heuristics
through dynamic pricing are important in practice.

3.2. Frequency of price changes

The numerical results so far show that the dynamic pricing
heuristics, particularly RA heuristic, dominate the performance of
fixed-price heuristics and the revenue gains through these heur-
istics can be very important in practice. A practical consideration
is the impact of frequency of price changes. In many applications,
one may find it impossible or impractical to alter the prices
continuously over time and choose to use a version of these
heuristics in which the prices are changed in a periodic manner.
In these cases, the season is divided into a pre-specified number
of periods and prices can be updated only at the beginning of
these periods. For RR heuristic, the deterministic problem can be
resolved and the prices (or the intensities) are changed only at the
beginning of each period, and this frequency of price changes
corresponds to the resolving frequency. For RA heuristic, the
prices (or the intensities) can be determined periodically using
Eq. (2) (We should note that one can attempt to solve the periodic
problem optimally using a dynamic program. However, the



Table 6
Frequency of price changes: exponential demand.

lnt n JFP Dynamic revenue rate: number of periods used JRR

2 3 4 5 6 7 8 9 10

10 1 0.8706 0.9591 0.9835 0.9921 0.9953 0.9961 0.9959 0.9953 0.9944 0.9934 0.9866

2 0.9259 0.9667 0.9777 0.9818 0.9834 0.9853 0.9857 0.9854 0.9848 0.9841 0.9841

3 0.9452 0.9658 0.9719 0.9756 0.9768 0.9790 0.9799 0.9800 0.9795 0.9787 0.9817

5 0.9564 0.9584 0.9639 0.9670 0.9678 0.9707 0.9718 0.9725 0.9723 0.9711 0.9769

8 0.9460 0.9508 0.9567 0.9596 0.9602 0.9637 0.9651 0.9661 0.9665 0.9646 0.9720

10 0.9248 0.9465 0.9572 0.9616 0.9629 0.9665 0.9680 0.9690 0.9695 0.9680 0.9753

40 1 0.7981 0.9093 0.9487 0.9675 0.9779 0.9843 0.9885 0.9913 0.9933 0.9948 0.9976

2 0.8654 0.9329 0.9574 0.9701 0.9776 0.9818 0.9849 0.9873 0.9892 0.9907 0.9973

3 0.8938 0.9426 0.9615 0.9711 0.9773 0.9806 0.9833 0.9854 0.9871 0.9886 0.9971

5 0.9209 0.9528 0.9647 0.9712 0.9759 0.9783 0.9804 0.9821 0.9835 0.9849 0.9967

8 0.9393 0.9537 0.9607 0.9649 0.9682 0.9697 0.9710 0.9722 0.9731 0.9743 0.9960

10 0.9463 0.9463 0.9497 0.9519 0.9537 0.9543 0.9550 0.9557 0.9562 0.9570 0.9956

AVG 0.9111 0.9487 0.9628 0.9695 0.9731 0.9759 0.9775 0.9785 0.9791 0.9792 0.9881

l*t n 1 Revenue approximation: number of periods used JRA

2 3 4 5 6 7 8 9 10

10 1 0.8461 0.9354 0.9642 0.9772 0.9841 0.9883 0.9911 0.9929 0.9943 0.9953 1.0000

2 0.9162 0.9550 0.9696 0.9774 0.9822 0.9854 0.9876 0.9893 0.9906 0.9916 0.9998

3 0.9376 0.9610 0.9717 0.9780 0.9821 0.9849 0.9870 0.9886 0.9899 0.9909 0.9998

5 0.9561 0.9688 0.9762 0.9809 0.9841 0.9863 0.9880 0.9893 0.9904 0.9913 0.9995

8 0.9698 0.9774 0.9821 0.9853 0.9875 0.9891 0.9904 0.9913 0.9920 0.9927 0.9987

10 0.9717 0.9814 0.9860 0.9886 0.9903 0.9914 0.9923 0.9930 0.9936 0.9940 0.9984

40 1 0.7908 0.9007 0.9402 0.9594 0.9704 0.9774 0.9821 0.9854 0.9879 0.9897 1.0000

2 0.8813 0.9342 0.9546 0.9658 0.9729 0.9778 0.9813 0.9839 0.9860 0.9876 0.9996

3 0.9096 0.9440 0.9591 0.9680 0.9739 0.9782 0.9813 0.9837 0.9856 0.9871 0.9993

5 0.9304 0.9528 0.9644 0.9715 0.9763 0.9798 0.9824 0.9845 0.9861 0.9874 0.9993

8 0.9427 0.9606 0.9698 0.9755 0.9794 0.9822 0.9843 0.9860 0.9874 0.9885 0.9994

10 0.9475 0.9644 0.9726 0.9776 0.9810 0.9835 0.9855 0.9870 0.9882 0.9893 0.9996

AVG 0.9167 0.9530 0.9675 0.9754 0.9804 0.9837 0.9861 0.9879 0.9893 0.9905 0.9995

Table 7
Frequency of price changes: linear demand.

lnt n JFP Dynamic run-out rate: number of periods used JRR

2 3 4 5 6 7 8 9 10

10 1 0.7206 0.8626 0.9163 0.942 0.9556 0.9633 0.9675 0.9698 0.9708 0.971 0.9798

2 0.8382 0.9228 0.951 0.9638 0.9701 0.9758 0.9786 0.9798 0.98 0.9795 0.9858

3 0.8961 0.949 0.9649 0.9733 0.9769 0.9812 0.9835 0.9845 0.9844 0.9834 0.9892

5 0.9535 0.9675 0.9754 0.9795 0.9807 0.9842 0.9857 0.9868 0.9866 0.985 0.9909

8 0.9716 0.9689 0.9729 0.975 0.9751 0.9786 0.98 0.9809 0.9814 0.979 0.9855

10 0.9448 0.9576 0.9671 0.9711 0.9722 0.9757 0.9772 0.9782 0.9789 0.977 0.9838

40 1 0.6554 0.8005 0.862 0.8955 0.9163 0.9303 0.9402 0.9477 0.9533 0.9578 0.9836

2 0.7584 0.8587 0.8992 0.9215 0.9357 0.9427 0.9489 0.9541 0.9585 0.9622 0.9861

3 0.8086 0.8864 0.9176 0.9329 0.9437 0.9482 0.9527 0.9565 0.9602 0.9636 0.9879

5 0.862 0.916 0.9322 0.9411 0.9485 0.9505 0.9533 0.9557 0.9582 0.9612 0.9905

8 0.9026 0.9206 0.9276 0.9323 0.9368 0.937 0.9384 0.9396 0.9408 0.9435 0.993

10 0.9195 0.9079 0.9075 0.9084 0.9103 0.9096 0.9099 0.9104 0.9109 0.9127 0.9942

AVG 0.8526 0.9099 0.9328 0.9447 0.9518 0.9564 0.9597 0.9620 0.9637 0.9647 0.9875

l*t n 1 Revenue approximation: number of periods used JRA

2 3 4 5 6 7 8 9 10

10 1 0.8922 0.9294 0.9587 0.9799 0.9922 0.9944 0.9958 0.9968 0.9974 0.9979 1.0000

2 0.9481 0.9545 0.9669 0.9803 0.9901 0.9919 0.9932 0.9941 0.9948 0.9953 0.9995

3 0.9530 0.9612 0.9703 0.9807 0.9892 0.9910 0.9923 0.9933 0.9941 0.9947 0.9997

5 0.9601 0.9688 0.9765 0.9834 0.9891 0.9908 0.9921 0.9930 0.9937 0.9944 0.9998

8 0.9761 0.9798 0.9839 0.9877 0.9905 0.9918 0.9927 0.9934 0.9940 0.9945 0.9991

10 0.9775 0.9830 0.9870 0.9897 0.9914 0.9924 0.9932 0.9938 0.9942 0.9946 0.9982

40 1 0.8724 0.9150 0.9489 0.9741 0.9903 0.9930 0.9947 0.9959 0.9967 0.9973 1.0000

2 0.9509 0.9536 0.9655 0.9795 0.9907 0.9925 0.9937 0.9946 0.9952 0.9957 0.9990

3 0.9624 0.9643 0.9705 0.9804 0.9897 0.9914 0.9926 0.9934 0.9941 0.9946 0.9984

5 0.9663 0.9707 0.9750 0.9812 0.9888 0.9904 0.9916 0.9925 0.9932 0.9937 0.9981

8 0.9654 0.9715 0.9769 0.9823 0.9886 0.9902 0.9914 0.9923 0.9930 0.9936 0.9986

10 0.9645 0.9710 0.9771 0.9827 0.9887 0.9903 0.9914 0.9924 0.9931 0.9937 0.9990

AVG 0.9491 0.9602 0.9714 0.9818 0.9899 0.9917 0.9929 0.9938 0.9945 0.9950 0.9991
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Table 8
Frequency of price changes: logit demand.

lnt n JFP Dynamic run-out rate: number of periods used JRR

2 3 4 5 6 7 8 9 10

10 1 0.8506 0.9484 0.9778 0.9893 0.9943 0.9963 0.9969 0.9968 0.9962 0.9954 0.9912

2 0.9141 0.9632 0.9775 0.9832 0.9857 0.9884 0.9893 0.9893 0.9888 0.9881 0.9894

3 0.9391 0.9663 0.9745 0.9792 0.9809 0.9836 0.9847 0.9850 0.9846 0.9838 0.9874

5 0.9582 0.9631 0.9693 0.9726 0.9735 0.9766 0.9778 0.9786 0.9784 0.9771 0.9830

8 0.9536 0.9567 0.9622 0.9649 0.9654 0.9689 0.9703 0.9713 0.9717 0.9697 0.9768

10 0.9307 0.9502 0.9606 0.9649 0.9662 0.9697 0.9712 0.9722 0.9728 0.9711 0.9783

40 1 0.7827 0.8982 0.9404 0.9610 0.9727 0.9801 0.9850 0.9884 0.9909 0.9928 0.9985

2 0.8533 0.9252 0.9519 0.9659 0.9743 0.9789 0.9824 0.9852 0.9875 0.9893 0.9983

3 0.8837 0.9367 0.9574 0.9679 0.9748 0.9782 0.9811 0.9835 0.9855 0.9873 0.9982

5 0.9135 0.9490 0.9615 0.9685 0.9736 0.9760 0.9781 0.9799 0.9816 0.9832 0.9979

8 0.9346 0.9497 0.9566 0.9610 0.9645 0.9657 0.9671 0.9683 0.9693 0.9707 0.9975

10 0.9429 0.9408 0.9436 0.9455 0.9473 0.9477 0.9484 0.9490 0.9495 0.9504 0.9972

AVG 0.9048 0.9456 0.9611 0.9687 0.9728 0.9758 0.9777 0.9790 0.9797 0.9799 0.9911

l*t n 1 Revenue Approximation: Number of periods used JRA

2 3 4 5 6 7 8 9 10

10 1 0.8389 0.9334 0.9636 0.9771 0.9843 0.9885 0.9913 0.9932 0.9945 0.9955 1.0000

2 0.9145 0.9547 0.9698 0.9778 0.9826 0.9858 0.9881 0.9897 0.9910 0.9920 0.9998

3 0.9364 0.9609 0.9720 0.9784 0.9826 0.9855 0.9875 0.9891 0.9903 0.9913 0.9998

5 0.9554 0.9690 0.9766 0.9813 0.9846 0.9868 0.9885 0.9898 0.9909 0.9917 0.9996

8 0.9707 0.9779 0.9825 0.9856 0.9878 0.9894 0.9906 0.9915 0.9923 0.9929 0.9988

10 0.9725 0.9813 0.9859 0.9885 0.9902 0.9914 0.9923 0.9930 0.9935 0.9940 0.9983

40 1 0.7816 0.8958 0.9373 0.9576 0.9692 0.9766 0.9815 0.9850 0.9876 0.9896 1.0000

2 0.8778 0.9327 0.9537 0.9653 0.9726 0.9776 0.9813 0.9840 0.9861 0.9878 0.9995

3 0.9080 0.9434 0.9588 0.9679 0.9740 0.9782 0.9814 0.9838 0.9858 0.9873 0.9992

5 0.9301 0.9528 0.9644 0.9716 0.9764 0.9800 0.9826 0.9847 0.9863 0.9877 0.9992

8 0.9427 0.9606 0.9699 0.9756 0.9795 0.9824 0.9845 0.9862 0.9876 0.9887 0.9994

10 0.9475 0.9644 0.9726 0.9777 0.9812 0.9837 0.9856 0.9872 0.9884 0.9894 0.9995

AVG 0.9147 0.9522 0.9673 0.9754 0.9804 0.9838 0.9863 0.9881 0.9895 0.9907 0.9994
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problem becomes intractable quickly. The prices that will be used
by periodic versions of RR and RA heuristics are easily computable
and in most cases, are closed-form expressions).

Table 6 shows the impact of the number of periods used on the
performance of RR and RA heuristics for exponential demand
function when ln

¼ pn ¼ 1. For the upper part of Table 6, the third
column is the performance (as a ratio of the optimal dynamic
policy) of FP heuristic (no resolving). The last column is the
performance of RR heuristic with continuous resolving. Columns
4–12 show the performance of RR heuristic when 2–10 equal-
length periods are used. For the lower part of Table 6, the third
column is the performance of RA heuristic when the price is set at
the beginning and never changed. The last column is the perfor-
mance of RA heuristic when the prices are continuously adjusted.
Columns 4–12 show the performance of RA heuristic when 2–10
equal-length periods are used.

The results in Table 6 are important. First, while resolving
periodically generates better performance than FP heuristic, the
impact of resolving is not monotone, i.e., resolving more often
does not necessarily lead to better performance. This is especially
true when starting inventory (n) and demand potential ðlntÞ are
both small. For moderate n and large lnt, resolving may provide
important gains over FP heuristic (consider, for example, n¼10
and lnt¼ 40). However, in order to realize these gains, resolving
has to take place very frequently; infrequent resolving generates
only modest improvement. One important observation is that
for n¼1 and lnt¼ 10, the performance of continuous resolving
is worse than resolving 4–10 times throughout the horizon.
Similarly for n¼2 and lnt¼ 10, the performance of continuous
resolving is worse than resolving 5–10 times throughout the
horizon.
Table 6 shows that RA heuristic behaves better with respect to
the frequency of price changes. Updating prices more often
always leads to better performance for RA heuristic. One can
quickly get close to the full revenue potential of RA heuristic by
introducing a limited number of opportunities to update prices,
especially when the expected demand is small ðlnt¼ 10Þ.

Table 7 extends the analysis to the linear demand function. In
this case, we have negative results similar to one provided in [9]
for RR heuristic. For example, when n¼10 and lnt¼ 40, resolving,
if not frequent enough, leads to a performance worse than that of
FP heuristic. Note that for this instance, continuous resolving
provides more than eight percent improvement over FP heuristic.
One can also observe the non-monotonicity of the RR heuristic’s
performance with respect to resolving frequency in Table 7. With
linear demand function, RA heuristic continues to behave nicely
with respect to the frequency of price changes. Increasing
frequency always leads to better performance. With linear
demand, for all problems, a performance around 99% can be
obtained by using five opportunities to change the price.

Table 8 shows the results for the logit price response function.
Again, RR heuristic’s performance is not monotone in resolving
frequency. Resolving may lead to a performance worse than FP

heuristic, and resolving continuously may lead to a performance
worse than resolving periodically. On the other hand, the perfor-
mance RA heuristic is monotone in the frequency of price changes
also for the logit function.

We conclude that in practical settings where continuously
changing prices is not possible, one should carefully fine-tune the
resolving frequency for RR heuristic for each problem setting as
there does not seem to be any universal relationship between the
resolving frequency and solution quality. The performance of RA
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heuristic, on the other hand, is monotone in the frequency of price
changes. One can obtain the desired performance by setting the
frequency sufficiently high.
4. Conclusion

In this paper, we investigate the use of fixed and dynamic
pricing policies for selling a fixed amount of inventory over a
finite horizon. We propose two simple and computationally
feasible dynamic pricing heuristics that can be used to update
prices as uncertainty is resolved throughout the horizon. The first
heuristic, the revenue approximation heuristic, is based on
approximating the value function that arise in the dynamic
programming formulation to determine optimal prices. The sec-
ond heuristic, the dynamic run-out rate heuristic, is based on
continuously resolving the deterministic version of the problem.
Through a detailed numerical study, we demonstrate that fixed-
price heuristics lead to serious shortcomings in revenue with
general demand functions for moderate and small values of
starting inventory when the demand potential is large. We show
that these are precisely the settings in which the dynamic pricing
heuristics that we propose can be effectively used to obtain near-
optimal performance. In particular, the revenue approximation
heuristic has a consistently remarkable performance, leading to a
maximum 0.2% optimality gap in all problems we consider. We
also study the impact of changing prices periodically rather than
continuously using these heuristics. We show that the revenue
approximation heuristic’s performance is monotone in the num-
ber of periods used and one can quickly get close to the full
revenue potential of continuous price changes. Our main conclu-
sion is that dynamic pricing heuristics lead to near-optimal
performance and can provide important gains over fixed-price
heuristics even when there is only normal statistical variation in
demand and that their use should be given more consideration in
theory and practice.
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