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In response to the thriving development in electronic commerce (EC), many on-line retailers have devel-
oped Web-based information systems to handle enormous amounts of transactions on the Internet.
These systems can automatically capture data on the browsing histories and purchasing records of indi-
vidual customers. This capability has motivated the development of data-mining applications. Sequential
pattern mining (SPM) is a useful data-mining method to discover customers’ purchasing patterns over
time. We incorporate the recency, frequency, and monetary (RFM) concept presented in the marketing
literature to define the RFM sequential pattern and develop a novel algorithm for generating all RFM
sequential patterns from customers’ purchasing data. Using the algorithm, we propose a pattern segmen-
tation framework to generate valuable information on customer purchasing behavior for managerial
decision-making. Extensive experiments are carried out, using synthetic datasets and a transactional
dataset collected by a retail chain in Taiwan, to evaluate the proposed algorithm and empirically demon-
strate the benefits of using RFM sequential patterns in analyzing customers’ purchasing data.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Electronic commerce (EC) is generally defined as the process of
buying, selling, or exchanging products, services, and information
via computer networks including the Internet (Turban et al.
2006). In response to the thriving development in EC, many on-line
retailers have developed Web-based information systems to han-
dle enormous amounts of transactions on the Internet. These sys-
tems can automatically capture data on the browsing histories
and purchasing records of individual customers. As a result, many
data-mining applications have been developed to discover useful
customer and market information from the data, such as Web
merchandising (Lee et al. 2001), Web site design improvement
(Spiliopoulou and Pohle 2001), click stream analysis (Lee et al.
2001), product recommendation (Lawrence et al. 2001, Schafer
et al. 2001), e-retailing (Chen et al. 2005, Lin et al. 2003, Tang
et al. 2008), cross-selling (Lin et al. 2003), customer profiling (Hu
and Chen 2008, Mahdavi et al. 2008), and e-catalog design (Lin
and Hong 2008).

Sequential pattern mining (SPM) is particularly useful in EC
applications, because it can be used to discover customers’ behav-
ioral and purchasing patterns over time. The methodology was first
ll rights reserved.
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introduced by Agrawal and Srikant (1995), which is described as
follows. Consider a dataset consisting of ‘‘data-sequences”, which
are lists of items purchased by individual customers over time.
The goal of SPM is to find all the frequent subsequences in the
dataset. For example, the method can be used to find the frequent
browsing patterns on a Web site, which are useful in evaluating the
design of the Web site.

In this study, we focus on mining sequential purchasing pat-
terns for the e-retailing industry. Existing studies in this area often
focus on finding sequential patterns based on the frequency with
which these patterns occur in the data. For example, a study may
find that a significant number of customers purchase a memory
card, an Internet cable, and a computer game in sequence. In prac-
tice, however, customers’ purchasing behaviors may change over
time for different reasons; for example, because of a change in
the economic environment. As a result, it is possible that a past
purchasing pattern may not be present again. Furthermore, a pat-
tern may not be important to the retailer when the product items
included in the pattern have low values (e.g., prices or profits).
Without considering the monetary value in selecting sequential
patterns, retailers may be overwhelmed by a large number of
low-value patterns.

To address these issues, we incorporate the concept of recency,
frequency, and monetary (RFM) introduced by Bult and Wansbeek
(1995) in SPM. We define recency as the period since a customer’s last
purchase; frequency, as the number of purchases made within a
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certain period; and monetary (value), as the amount of money that a
customer spent during a certain period. Using these three selection
criteria properly helps retailers focus on important purchasing
patterns.

We use two thresholds, upper and lower, to form a constraint
for each selection criterion. The thresholds for recency, respec-
tively denoted by Rtime_min to Rtime_max, are the earliest and lat-
est times from a given starting time for the last transaction of a
selected pattern. For example, if we set Rtime_min = 200 and Rti-
me_max = 270, the last transaction of a selected pattern must occur
between 200 and 270 days from the starting date. Similarly, M_min
andM_max are the upper and lower thresholds for the monetary
constraint, ensuring that the value of the selected pattern is be-
tween M_min and M_max. The frequency of a pattern is the per-
centage of sequences that satisfy the recency and monetary
constraints. A pattern is an RFM pattern if its frequency falls within
minsup_min and minsup_max. By setting these three constraints,
we may discover RFM-patterns such as, ‘‘30% of customers who re-
cently bought a computer will return to buy a scanner and a micro-
phone, and the total value will exceed NT$ 50,000”. Retailers can
adjust these three constraints according to their needs. Note that,
if a retailer is interested only in the traditional sequential patterns,
it can relax the recency and monetary constraints. Similarly, a re-
tailer can relax the monetary constraint to focus on the other
two constraints, if monetary is not a concern.

We develop an efficient algorithm for finding RFM sequential
patterns from customers’ data-sequences. The algorithm also al-
lows us to partition the RFM-patterns into segments relevant to
the RFM criteria. By comparing, contrasting, and aggregating the
patterns in the segments, retailers can identify patterns that re-
quire special attention and action. For example, a retailer may find
patterns with a large monetary value, which appear just recently.
In this case, the retailer could devote more resources to promotion,
inventory, etc., associated with the items in those patterns. Fur-
thermore, a retailer may find some patterns with decreasing fre-
quencies or monetary values in recent time, which may cause
the retailer to adjust marketing and/or product strategies.

The rest of this paper is organized as follows. We give a litera-
ture review of SPM in Section 2 and formally define the problem
and RFM-patterns in Section 3. In Section 4, we develop the
RFM-Apriori algorithm for finding all RFM-patterns. Experimental
results for evaluation are given in Section 5, and our conclusions
are presented in Section 6.

2. Related work

SPM is a useful method of extracting sequential patterns with a
support level exceeding a predefined minimal threshold. The
method has been widely used in areas such as mining user access
patterns on Web sites, using the history of symptoms to predict po-
tential disease, recommend products to users, and adjust the struc-
ture of Web sites. Business organizations can also use SPM to study
customer behaviors and provide better management of customer
relationships.

Existing research on SPM can be divided into two main catego-
ries: (1) improving the efficiency of the mining process (Pei et al.
2000, 2001; Srikant and Agrawal 1996, Zaki 2001); and (2) propos-
ing additional time-related patterns, such as frequent episodes,
traversal patterns, cyclic patterns, periodic patterns, multiple-
dimensional sequential patterns, hybrid sequential patterns,
time-interval sequential patterns, and fuzzy sequential patterns
(Chen et al. 1998, 2001, 2003; Chen and Huang 2005, Han et al.
1999, Mannila et al. 1997, Toroslu 2003, Yu and Chen 2005). These
studies focus on the frequency in selecting sequential patterns.

Several researchers have considered RFM variables in develop-
ing prediction and classification models. For example, a Bayesian
Networks approach has been proposed, using RFM variables to pre-
dict a customer’s response to direct marketing (Cui et al. 2006).
Additional examples include data-mining models for predicting
customer loyalty (Cheng and Chen 2009) and customer lifetime va-
lue (Etzion et al. 2005), and classifying customers in their profit-
ability. Applications based on RFM concepts have also been
proposed for the mobile communications industry (Mozer et al.
2000, Weiss 2005), including churn prediction, customer retention,
and cross-selling.

To the best of our knowledge, however, this paper is the first in
applying the RFM criterion in SPM. As discussed in the Introduc-
tion, all the three criteria could be very important to an online re-
tailer, which motivates this research.
3. Problem definition

We represent a customer’s data sequence by A = h(a1, t1,m1),
(a2, t2,m2), . . . , (an, tn,mn)i, where (aj, tj,mj) indicates that item aj

was purchased at time tj with a total value of mj,1 6 j 6 n, and
tj�1 6 tj for 2 6 j 6 n. If items occur at the same time in the data se-
quence, they are ordered alphabetically.

Based on this data format, we have the following definitions.

Definition 1 (Containment of itemset). Let I denote the set of all
items in the database. Let A = h(a1, t1,m1), (a2, t2,m2), . . . , (an, tn,mn)i
be a data sequence where t1 6 t2 6, . . . ,6 tn, and Iq = (i1i2, . . . , im) be
an itemset where ip 2 I (1 6 p 6m). Itemset Iq is contained in A if
there are m integers 1 6 k1 < k2 < . . . < km 6 n such that i1 ¼ ak1

,
i2 ¼ ak2

, . . . , im ¼ akm
and tk1

¼ tk2
¼; . . . ;¼ tkm

. We refer to k1 and tk1

as the position and the time at which Iq occurs in A, respectively.

Definition 2 (Subsequence). Following Definition 1, let B = hI1I2, . . . ,
Isi be a sequence of itemsets, where each Iq # I, (1 6 q 6 s), is an
itemset. Then, sequence B is contained in A (meaning B is a subse-
quence of A), if the following conditions are satisfied: (1) each Iq

in B is contained in A, and (2) tI1 < tI2 < . . . < tIs , where tIq

(1 6 q 6 s) is the time at which Iq occurs in A. The length of a sub-
sequence B is the number of itemsets in B (length (B) = s).

Example 1. (Subsequence) Itemset (ab) is contained in data
sequence A = h(a, 1, 10), (c, 3, 40), (a, 4, 30), (b, 4, 70), (a, 6, 50),
(e, 6, 90), (c, 10, 70)i, because both items a and b occur in A at time
4. The sequence h(ab) (ae)i is a subsequence of A because itemset
(ab) occurs in A at time 4 and (ae) occurs at time 6.

Definition 3 (Recent subsequence). Following Definition 2, assume
that tIq is the time at which Iq (1 6 q 6 s) occurs in A, and Rtime_-
min, Rtime_max are the user-specified recency thresholds. B is a
recent subsequence of A if and only if we can find a subsequence
B from A that satisfies the recency constraint (tIs P Rtime_min
and tIs < Rtime_max).

Example 2. (Recent subsequence) Let A = h(a, 1, 10), (c, 3, 40), (a, 4,
30), (b, 4, 70), (a, 6, 50), (e, 6, 90), (c, 10, 70)i be a data sequence,
Rtime_min = 5, and Rtime_max = 8. Then, sequence h(c)(b)(ae)i is a
recent subsequence of A because h(c)(b)(ae)i is a subsequence of
A and the occurrence time of itemset (ae) = 6 P Rtime_min and
6 < Rtime_max.

Definition 4 (Recent monetary subsequence). Following Definition
3, assume that mIq is the total value of Iq (1 6 q 6 s) in A, and
M_min, M_max are the user-specified monetary thresholds. B is
called a recent monetary subsequence of A if and only if we can
find a subsequence B from A such that (1) B is a recent subsequence
of A, and (2) the monetary constraint is satisfied ðM min 6 mI1þ
mI2 þ . . . :þmIs < M maxÞ.
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Example 3. (Recent monetary subsequence) Let A = h(c, 5, 30), (b,
6, 40), (a, 10, 30), (b, 17, 60), (b, 19, 90), (c, 19, 70)i be a data
sequence, Rtime_min = 8, Rtime_max = 20, M_min = 170, and
M_max = 220. According to Definition 4, h(c)(b)(c)i is a recent mon-
etary subsequence of A because we can find a subsequence (h(c, 5,
30), (b, 19, 90), (c, 19, 70)i) from A that is a recent subsequence of A
and whose total value is 190, satisfying M_min 6 190 < M_max.

Definition 5. (F pattern, RF pattern, and RFM pattern) Let
B = hI1I2. . .Isi be a sequence of itemsets. If the percentage of data-
sequences in the database containing B as a subsequence, called
f-support and denoted B.supf, is no less than minsup_min, we call
B an F pattern. B is an RF pattern if the percentage of data-
sequences in the database containing B as a recent subsequence,
called rf-support and denoted B.suprf, is no less than minsup_min.
Finally, B is an RFM pattern if the percentage of data-sequences
in the database containing B as a recent monetary subsequence,
called rfm-support and denoted B.suprfm, is between minsup_min
and minsup_max.
Fig. 1. The RFM-Apriori algorithm overview.
4. Algorithms

In this section, we introduce the RFM-Apriori algorithm, which
is designed to find sequential patterns from customers’ data-se-
quences. The algorithm is developed by modifying the well-known
Apriori (GSP) algorithm (Srikant and Agrawal 1996). Before giving
the details of the algorithm, we provide a general description of the
algorithm and compare it with GSP.

The GSP algorithm consists of iterative phases. First, it puts all
items into C1, the set of candidate F patterns with length 1, and
then scans the database to find the frequent 1-patterns (L1). Sec-
ond, suppose we already have the set of frequent (k � 1)-patterns
Lk�1. It generates the set of candidate F patterns Ck by joining
Lk�1 with Lk�1. Afterward, it scans the database to determine the
supports of the patterns in Ck, and then finds Lk by removing those
patterns from Ck with supports lower than the minimum support.
We repeat this phase, increasing k by one, until no more patterns
can be generated.

RFM-Apriori differs from the Apriori (GSP) algorithm in the fol-
lowing ways:

(1) Candidate generation: In RFM-Apriori, we also generate can-
didate patterns from the set of frequent patterns with
shorter length. Let CIk denote the set of candidate RF pat-
terns with length k in RFM-Apriori. Then, we have the fol-
lowing four differences between the two algorithms: (a) In
GSP, each phase expands the patterns by one item, but, in
RFM-Apriori, each phase expands the patterns by one item-
set; (b) CI1 is generated from the set of all frequent itemsets
found by the traditional Apriori algorithm; (c)CI2 is gener-
ated by joining LIf

1 and LIrf
1 , where LIf

1 is the set of F patterns
with length 1 and LIrf

1 is the set of RF patterns with length 1;
and (d) CIk, where k > 2, is generated by joining LIrf

k�1 and
LIrf

k�1, where LIrf
k�1 is the set of RF patterns with length k � 1.

(2) Support counting: The traditional GSP algorithm computes
the support B.supf for a candidate pattern B in Ck. RFM-Apri-
ori, however, computes B.suprf and B.suprfm for each pattern B
in CIk. An inverse candidate tree, a structure that stores all
patterns in CIk, is used to speed up the support-counting
process.

An overview of the algorithm is given in Fig. 1. First, we include
all frequent itemsets found by the traditional Apriori in LIf

1. Then,
we scan the database to determine their rf-supports and rfm-sup-
ports. Since this procedure is similar to the support-counting pro-
cedure discussed in Section 4.2, we omit the explanation here.
After this, we obtain LIrf

1 and LIrfm
1 . Next, we perform an iterative

process of candidate generation and support counting, just like
the traditional GSP. These two components will be introduced in
Sections 4.1 and 4.2, respectively. Section 4.3 provides a simple
yet complete example to illustrate the algorithm. Finally, we ana-
lyze the time complexity of the algorithm in Section 4.4.

4.1. Candidate generation

There are two major differences between the proposed and tra-
ditional methods with regard to candidate generation. First, we use
an itemset as a unit to expand the patterns, rather than just an
item. The advantage of using an itemset is that it can reduce the
number of phases needed to complete the algorithm, thus improv-
ing efficiency. Second, we use a different method to generate CIk,
where k P 2. We join two frequent patterns of length k � 1 to gen-
erate candidate RF patterns of length k, where k P 2, if they have
the same (k � 2)-postfix. Next, we explain how we generate CI2

and CIk in detail.
We generate CI2 by joining LIf

1 and LIrf
1 . In other words, if

B1 = hIai, B2 = hIbi, where B1 2 LIf
1, B2 2 LIrf

1 , then we will have hIa,
Ibi in CI2. The following lemma shows that CI2 contains all candi-
date RF patterns of length 2. The proofs are given in Appendix A.

Lemma 1. All patterns in LIrf
2 must exist in CI2.

Lemma 2. If pattern B is an RF pattern (B is in LIrf
k Þ, then a subse-

quence of B with the same last itemset as B must also be an RF pattern.
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For example, if h(a)(cd)(e)i satisfies the recency constraint, then
h(a)(e)i, h(cd)(e)i, and h(e)i also satisfy the recency threshold.
h(a)(cd)i may not, however, satisfy the recency constraint.

Lemma 3. All patterns in LIrf
k (k > 2) must exist in CIk.

Example 4. Suppose we have LIf
1 ¼ fhai; hbi; hci; hðabÞi; hðbcÞig and

LIrf
1 ¼ fhbi; hcig. Then, CI2 = {h(a)(b)i, h(a)(c)i, h(b)(b)i, h(b)(c)i,
h(c)(b)i, h(c)(c)i, (ab)(b)i, h(ab)(c)i, (bc)(b)i, h(bc)(c)i}. Further
assume that we have LIrf

3 ¼ fhðbÞðaÞðcÞi; hðcÞðaÞðcÞi; hðbÞðbÞðcÞi;
hðcÞðbÞðcÞi; hðbÞðabÞðcÞi; hðcÞðabÞðcÞig. Then, CI4 = {h(b)(b)(a)(c)i,
h(b)(c)(a)(c)i, h(c)(b)(a)(c)i, h(c)(c)(a)(c)i, h(b)(b)(b)(c)i, h(b)(c)(b)(c)i,
h(c)(b)(b)(c)i, h(c)(c)(b)(c)i, h(b)(b)(ab)(c)i, h(b)(c)(ab)(c)i, h(c)(b)
(ab)(c)i, h(c)(c)(ab)(c)i}.
4.2. Counting supports by traversing an inverse candidate tree

To count supports, we use an inverse candidate tree to store all
candidate patterns in CIk, where a leaf node corresponds to a can-
didate pattern. Using every data sequence to traverse the tree, we
can accumulate support values in each leaf node. This is an effi-
cient method of determining whether a candidate pattern satisfies
the recency constraint. Fig. 2 shows how each data sequence tra-
verses the tree and accumulates supports in leaf nodes. Basically,
this traversal procedure is a recursive program by which we can
match all subsequences in T with all candidate patterns in CIk. If
we can find a matched subsequence that satisfies both the recency
Fig. 2. Procedure Traverse (u,T, i,et, totalmoney).
and monetary constraints for a pattern (leaf node), we increase the
rfm-support and rf-support of this pattern by one. If it satisfies only
the recency constraint, however, we increase only the rf-support
by one. In the following subsections, we discuss the details of the
inverse candidate tree, but omit the procedure of support counting
for simplicity.

4.2.1. Inverse candidate tree
This tree is constructed by inserting the itemsets in all candi-

date patterns of CIk into an empty tree in reverse order. For exam-
ple, for CI2 = {h(a)(b)i, h(a)(c)i, h(b)(b)i, h(b)(c)i, h(c)(b)i, h(c)(c)i,
(ab)(b)i, h(ab)(c)i, (bc)(b)i, h(bc)(c)i}, the constructed inverse candi-
date tree is shown in Fig. 3, where a hyphen preceding an item
indicates that it is in the same itemset as its parent item.

Now, we use an example to illustrate why the inverse tree can
improve efficiency in support counting. Suppose we have a candi-
date pattern h(a) (c)i, a data sequence T = h(a, 1, 10), (c, 3, 40), (a, 4,
30), (b, 4, 70), (a, 6, 50), (c, 10, 70)i, Rtime_min = 15, and Rtime_-
max = 20. In a normal recursive support-counting procedure, the
subsequences in T would be examined in this order: h(a, 1, 10),
(c, 3, 40)i, h(a, 1, 10), (c, 10, 70)i, h(a, 4, 30), (c, 10, 70)i, h(a, 6,
50), (c, 10, 70)i. Since we are using an inverse candidate tree, how-
ever, we have to invert the data sequence’s examination order. As a
result, the subsequences in T would be examined in this order: h(c,
10, 70), (a, 6, 50)i, h(c, 10, 70), (a, 4, 30)i, h(c, 10, 70), (a, 1, 10)i, h(c,
3, 40), (a, 1, 10)i. We now investigate the differences between
these two approaches.

j Traverse in normal order. In this case, all four subsequences in T
must be checked in order to ensure that h(a)(c)i does not satisfy
the recency constraint.
j Use the inverse candidate tree. In this case, the data sequence is
examined from back to front. When we check (c, 10, 70), we find
that the recency constraint is violated because 10 < Rtime_min.
This means we can skip all succeeding subsequences because
their times cannot be greater than 10. Therefore, we have dis-
covered a convenient property of the inverse candidate tree; if
one itemset in the sequence occurs earlier than Rtime_min, then
this subsequence and all of its succeeding subsequences will not
satisfy the recency constraint.
Table 1
RFM-Apriori example data sequence.

Sid Sequence

10 h(a, 1, 10), (c, 3, 40), (a, 4, 30), (b, 4, 70), (a, 6, 50), (c, 10, 70)i
20 h(b, 3, 30), (c, 5, 50), (a, 7, 20), (b, 7, 70), (c, 14, 20)i
30 h(a, 8, 40), (b, 8, 50), (b, 16, 20), (c, 20, 100)i
40 h(b, 15, 30), (b, 22, 20), (c, 22, 120)i
50 h(c, 5, 30), (b, 6, 40), (a, 10, 30), (b, 10, 60), (b, 19, 90), (c, 19, 70)i
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4.3. A complete example

Consider a data sequence DB given in Table 1 and six thresholds,
Rtime_min = 10, Rtime_max = 21, M_min = 150, M_max = 250, min-
sup_min = 2, and minsup_max = 4. The goal is to find all RFM-
patterns.

The proposed algorithm produces the following results:

� LIf
1 ¼ fhai; hbi; hci; hðabÞi; hðbcÞig, LIrf

1 ¼ fhbi; hcig, LIrfm
1 ¼ fg

� LIrf
2 ¼ fhðaÞðbÞi; hðaÞðcÞi; hðbÞðbÞi; hðbÞðcÞi; hðcÞðcÞi; hðabÞðbÞi;
hðabÞðcÞig, LIrfm

2 ¼ fhðabÞðcÞig
� LIrf

3 ¼ fhðbÞðaÞðcÞi; hðaÞðbÞðcÞi; hðcÞðaÞðcÞi; hðbÞðbÞðcÞi; hðcÞðbÞðcÞi;
hðbÞðabÞðcÞi; hðcÞðabÞðcÞig,
LIrfm

3 ¼ fhðaÞðbÞðcÞi; hðbÞðbÞðcÞi; hðcÞðbÞðcÞi; hðcÞðabÞðcÞig
� LIrf

4 ¼ fhðcÞðbÞðaÞðcÞig, LIrfm
4 ¼ fhðcÞðbÞðaÞðcÞig

4.4. Time complexity

The following theorem gives the time complexity of the algo-
rithm. Its proof is given in Appendix A.

Theorem 1. The time complexity of the RFM-Apriori is Oðððm�
Cn

R � RÞ þ ðq� RÞÞ � KÞ, where q is maxkjCIkj, m the number of data-
sequences in the database, n the maximum number of items in a data
sequence, R the maximum number of items in a candidate pattern, and
K the total number of iterations in the algorithm.
Table 2
The parameters of synthetic datasets.

jDj: Number of customers
jCj: Average number of transactions per customer
jTj: Average number of items per transaction
jSj: Average length of maximal potentially large sequences
jIj: Average size of itemsets in maximal potentially large sequences
NS: Number of maximal potentially large sequences
NI: Number of maximal potentially large itemsets
N: Number of items
TI: Average length of time intervals
H_price: Average price of high-priced items
M_price: Average price of medium-priced items
L_price: Average price of low-priced items
H_quantity: Average purchased quantity of high-priced items
M_quantity: Average purchased quantity of medium-priced items
L_quantity: Average purchased quantity of low-priced items

Table 3
The test synthetic datasets.

Name jCj jTj jDj

SYN-DS1 10 2.5 250k
SYN-DS2 10 2.5 500k
SYN-DS3 10 2.5 750k
SYN-DS4 10 2.5 250k
SYN-DS5 15 2.5 250k
SYN-DS6 20 2.5 250k
SYN-DS7 10 2.5 250k
SYN-DS8 10 3.5 250k
SYN-DS9 10 4.5 250k
5. Performance evaluation

The three algorithms, GSP, RFM-Apriori and RAFM-Apriori, have
been implemented in Java language on a Pentium M 1.73 GHz Win-
dows XP system with 1 gigabyte of main memory. Note that RAFM-
Apriori and RFM-Apriori are the same except that we measure the
recency of a pattern by taking the average of recency values for all
itemsets in its sequence. For example, assume we have pattern
h(c)(b)(ae)i. Then, the average recency value of this pattern is the
average time values of itemsets (c), (b), and (ae) in data sequences.
We ignore the time stamp and the money attribute in transactions
in applying the GSP algorithm, because it is designed for mining
sequential patterns without recency and monetary considerations.

The content of this section is divided into four parts. Section 5.1
describes the synthetic datasets and the real dataset used in the
experiments. In Section 5.2, we compare the running time, mone-
tary value, recency, and the number of patterns between GSP and
RFM-Apriori. We further conduct a scalability analysis for the
two algorithms. In Section 5.3, we first compare the running time
and number of patterns generated by RFM-Apriori and RAFM-
Apriori. Then, we compare the number of patterns generated by
these two algorithms with different time windows. Finally, in Sec-
tion 5.4, we propose a pattern segmentation method for generating
valuable information for managerial decision-making.

5.1. Synthetic data generation and real-life dataset

Synthetic datasets are generated using Agrawal and Srikant
(1995) synthetic data- generation algorithm. Each transaction con-
tains a sequence of itemsets; however, the transaction data are ex-
tended so that items in different itemsets are assigned different
time values and items in the same itemsets are assigned the same
time values. All items are divided into three price levels: high,
medium, and low. An item’s price is determined by drawing a value
from a Poisson distribution with mean H_price, M_price, and
L_price. We also assume that the quantity of an item purchased
in a transaction is inversely related to its price. According to this
assumption, the purchased quantities of high-, medium-, and
low-priced items are drawn from a Poisson distribution with mean
H_quantity, M_quantity, and L_quantity, respectively. A detailed
description of the datasets is given in Appendix B.

Table 2 contains the list of parameters used in the simulation;
the first eight parameters have often been used in previous re-
search, but the other parameters are new ones created for our
study. In the simulation, these parameters are fixed: jSj = 4,
jIj = 1.25, NS = 5000, NI = 25,000, N = 10000, TI = 10, H_price = 1000,
M_price = 500, L_price = 100, H_quantity = 1, M_quantity = 3, and
L_quantity = 5. The parameter settings for the nine synthetic data-
sets are shown in Table 3.

We include a real dataset, called SC-POS, which is the sales re-
cords of a supermarket chain in Taiwan. The SC-POS dataset re-
corded all transactions from twenty branches between 12/27/
2001 and 12/31/2002. Each data sequence in SC-POS is the shop-
ping list of a customer’s transaction, which recorded the purchase
times, prices, and quantities. After performing a series of data pre-
processing and cleaning tasks, the final dataset contains 17,685
product items and 33,500 customers’ data-sequences. For addi-
tional information, please see Appendix B.

5.2. The comparison between algorithms GSP and RFM-Apriori

The first comparison is based on the nine synthetic datasets
shown in Table 3 and a real dataset, SC-POS. We compare the run-
times of the two algorithms by varying minsup_min from 0.5% to
1.25% in the synthetic datasets and from 3.5% to 2.5% in the real-
life dataset. Because of the space limitation, we report only the re-
sults from dataset C10-T2.5-D25k; the results from the other eight
synthetic datasets are similar. As shown in Tables 4 and 5, the pro-
posed method takes slightly less time and generates much smaller
numbers of patterns. These results are expected, because our
method is designed to find only the patterns that satisfy the
recency and monetary criteria. Nevertheless, the comparisons
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Fig. 4. Scalability test with respect to the number of customers.

Table 7
A comparison between RFM and GSP in recency.

Minsup_min RFM GSP

Recency

80–360 160–360 240–360

0.027 221 (129)* 256 (83) 294 (23) 188 (509)
0.030 221 (105) 252 (58) 295 (18) 187 (426)
0.033 219 (80) 252 (58) 294 (14) 184 (338)

* The numbers of patterns are reported in parentheses.

Table 4
Running time and number of patterns vs. minsup_min for dataset SYN-DS1.

Running time (s) Number of patterns

Minsup RFM GSP RFM GSP

0.0050 150 172 291 2717
0.0075 100 81 48 835
0.0100 78 55 30 336
0.0125 43 48 4 156

Table 5
Running time and number of patterns vs. minsup_min for dataset SC-POS.

Running time (s) Number of patterns

Minsup RFM GSP RFM GSP

Minsup RFM GSP RFM GSP
0.025 70 16692 4 592
0.030 50 2472 3 426
0.035 41 2454 2 303
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suggest a very large number of patterns in the datasets, which are
potentially not useful to the retailer.

We use Table 6 to compare the average monetary values and
number of patterns (in parentheses) produced by RFM-Apriori
and GSP under selected values of M_Min and Minsup_min. The re-
sults show that RFM-Apriori can effectively identify small numbers
of high-values patterns.

Similarly, we use Table 7 to compare the recency value and
number of patterns (in parentheses) produced by RFM-Apriori
and GSP under selected values of recency ranges, while the
M_Min value is kept at 50. As expected, the average recency value
increases as the lower limit of recency increases. The results also
show that RFM-Apriori can effectively identify more recent pat-
terns as the limit is specified as a retailer.

Next, the scalabilities of the two algorithms are compared.
Three tests are designed, and the dataset C10-T2.5-S4-I1.25-
D250K is treated as the baseline. During the tests, we vary the va-
lue of a selected parameter and keep all the other parameters con-
stant. In each test, however, a parameter is increased to determine
how the algorithms scale up as the parameter increases. The first
test varies the number of customers, jDj, from 250,000 to
750,000; the second varies the average number of transactions
per customer, jCj, from 10 to 20; and the final test varies the aver-
age number of items bought per transaction, jTj, from 2.5 to 4.5. We
set minsup_min at 0.5%, 1%, and 0.8% for jDj, jCj, and jTj, respec-
tively. The results (Figs. 4–6) indicate that the runtimes and num-
bers of patterns of these two algorithms scale up linearly with jDj,
but exponentially with jCj and jTj. It is interesting to note, however,
that the difference in the numbers of patterns is much larger than
that of runtimes. This is because RFM-Apriori trims many uninter-
esting patterns at the cost of more complicated processing. As a
result, although the number of patterns in RFM-Apriori is only
Table 6
A comparison between RFM and GSP in the average monetary value and the number
of patterns.

Minsup_min RFM GSP

M_Min

50 75 100

0.027 169 (71)* 201 (52) 232 (39) 75 (509)
0.030 176 (46) 218 (33) 251 (25) 73 (426)
0.033 166 (34) 211 23 232 (19) 70 (338)

* The numbers of patterns are reported in parentheses.
one-fifth of GSP’s, the difference in runtime is not as large. We also
notice that, as the parameter value increases, the difference in
runtimes between the two algorithms also increases. This phenom-
enon also occurs for jCj and jTj with regard to the number of pat-
terns. Since C and T determine the length of a data sequence, this
would indicate that longer sequences would result in more pat-
terns. This does not hold for jDj, however, because the number of
generated patterns remains the same for all values of jDj. Since
jDj stands for the number of sequences in a database, this result
implies that the patterns found from a subset of data sequences
in D are a good approximation of the results mined from all
sequences in D.

The following two tests are designed to evaluate how the re-
cency and monetary constraints influence the proposed algo-
rithm’s runtime and number of patterns. All of the tests are
based on the C20-T2.5-S4-I1.25-D250K dataset, and we vary only
the value of a single parameter, Rtime_min or M_min, keeping all
other parameters constant. The results in Fig. 7 show that, as Rti-
me_min increases, both the runtime and the number of patterns
of the RFM-Apriori algorithm decrease. This is a reasonable result
because, if Rtime_min increases, it becomes more difficult for a pat-
tern to satisfy the recency constraint. Fig. 8 shows how the runtime
and number of patterns change as we vary the value of M_min.
Similarly, as M_min increases, the number of patterns decreases,
because it is more difficult for a pattern to satisfy the monetary
constraint. The runtime, however, remained constant at different
values of M_min. This may be because the most time-consuming
part of our algorithm is generating CIk from LIrf

k�1. After obtaining
CIk, the support-counting procedure is executed to determine LIrf

k

and LIrfm
k . In other words, no matter how tight the monetary con-

straint is, we cannot reduce the resources needed to generate CIk

and obtain LIrf
k , which are the most time-consuming parts of the

algorithm. Therefore, we cannot save runtime by imposing tight
monetary constraints.

Next, we examine various types of patterns generated from the
nine synthetic datasets and the real-life dataset. In this investiga-
tion, we consider only three types of patterns, RFM-patterns, RF
patterns, and F patterns. F patterns are traditional sequential pat-
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terns, RF patterns are patterns that are subject to the recency con-
straint, and RFM-patterns are subject to both monetary and re-
cency constraints. Table 8 shows the percentage of F patterns
that are RF patterns and RFM-patterns. The results from the SC-
POS dataset indicate that, if we only consider the recency con-
straint, we can filter out about 90% of F patterns. If we consider
both constraints, however, we can filter out about 99% of F
patterns.

5.3. Comparison between RFM-patterns and RAFM patterns

In this section, we compare RFM and RAFM patterns using real
dataset SC-POS. We first compare the runtime and the number of
patterns of the RFM and RAFM algorithms under selected values
of support thresholds, and then compare the numbers of RFM pat-
terns and RAFM patterns under two recency settings. We set min-
sup_max = 1, M_min = 50, and M_max = 10,000 in these
comparisons.

Figs. 9 and 10 give the runtimes and numbers of patterns of
the RFM and RAFM algorithms under selected values of support
thresholds ranging from 0.18% to 0.22%. The results show that
both algorithms require roughly the same amount of runtime,
which is expected because computing recency values does not
consume much time. Further, Fig. 10 shows that the number
of RAFM patterns is always larger than that of RFM patterns.
We use Fig. 11 to explain this result, where the numbers of
RFM and RAFM patterns are obtained for two ‘‘recency
windows.”
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Table 8
The proportions of patterns in datasets.

C10-T2.5-S4-I1.25 RF RFM F

Name # of patterns % # of patterns % # of patterns %

D = 25, minsup_min = 0.075 186 22.28 48 5.75 835 100
D = 50, minsup_min = 0.075 189 23.74 23 2.89 796 100
D = 75, minsup_min = 0.075 187 23.58 23 2.9 793 100
C = 10, minsup_min = 0.015 4 4.04 0 0 99 100
C = 15, minsup_min = 0.015 78 21.67 5 1.39 360 100
C = 20, minsup_min = 0.015 293 29.27 36 3.6 1001 100
T = 2.5, minsup_min = 0.008 152 21.71 43 6.14 700 100
T = 3.5, minsup_min = 0.008 639 28.11 204 8.97 2273 100
T = 4.5, minsup_min = 0.001 1122 24.64 455 9.99 4554 100
SC-POS, minsup_min = 0.015 168 9.86 14 0.82 1704 100
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The first recency window is between Rtime_min = 120 and Rti-
me_max = 240, denoted as [120,240], and the second is
[240,360]. Note these two windows have the same length, but
the second is more ‘‘recent.” The results indicate that we tend to
obtain more RFM patterns when the window is more recent, and
more RAFM patterns when the window is less recent. This is be-
cause the average recency value is always smaller than the latest
recency value. Therefore, when the window has earlier starting
time, we would obtain more RAFM patterns.

5.4. Applications and managerial implications

In this section, we first show how the proposed algorithm can
be used for pattern segmentation, just as RFM has-been used for
market segmentation. To illustrate it, we divide the ranges of R,
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Fig. 9. Runtime vs. Minsup.
F, and M of the SC-POS dataset into five equal segments (as shown
in Table 9) to create 125 groups for the RFM-patterns. Some of the
groups are shown in Table 10, where group a-b-c contains patterns
with the F, R, and M values in segments a, b, and c, respectively. For
example, a pattern in group 1-1-1 has an F value between 0.007
and 0.008, an R value between 0 and 75, and an M value between
0 and 100.

The information in Table 10 is interesting in several ways. For
example, the patterns in group 1-1-5 have a high monetary value
in the past, but a low frequency. We may check if these patterns
still have a high monetary value now, and if not, we should try
to find the reason. Another example is the patterns in group 5-5-
1, which become very active recently but have a low-value. For
these patterns, we may attempt to increase their values by, for
example, setting higher prices or lowering their costs for the items
in the pattern. If these options are not available or attractive, we
may consider removing these items from our selling list.
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Table 9
Five segments for each of the selection criteria.

Divisions R F M

Segment 1 0–75 0.007–0.008 0–100
Segment 2 75–150 0.008–0.009 100–200
Segment 3 150–225 0.009–0.01 200–300
Segment 4 225–300 0.01–0.02 300–400
Segment 5 300–360 0.02–1 400

Table 10
RFM-pattern segmentation.

RFM-groups No. of patterns

1-1-1 50
3-3-3, 1-1-5 0
5-5-5 3
5-1-1 40
1-5-1 97
1-5-5 17
5-1-5, 5-3-5 0
5-5-1 22
3-5-5 4
5-5-3 3
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Using the framework, we can perform additional analyses to
study possible changes in patterns over time. For example, by fix-
ing the values for F and M at appropriate levels, and examining the
patterns over the R segments, we can identify ‘‘emerging patterns”
and ‘‘inactive patterns,” which are only found, respectively, in re-
cent and early segments. Furthermore, we may find cyclic or sea-
sonal patterns by the same analysis. However, the R segments
have to be set on a monthly, quarterly, or yearly basis.

Furthermore, we may fix the M value and examine the patterns
in different combinations of R and F segments to see whether their
frequencies are stable, increase, or decrease over time. Similarly,
we may study the monetary values over time by fixing the F value.
These analyses provide a retailer with valuable information for
decision-making.

6. Conclusions

Most existing algorithms for mining sequential patterns focus
on frequency as the sole selection criterion. Although frequency
is an essential criterion in determining the value of a pattern, there
could be other important ones. For example, the values of products
in product recommendation could be a critical criterion for on-line
retailers. Otherwise, we may obtain a large number of patterns
with low values.
In this paper, we include two such criteria, recency and mone-
tary, and propose the recency, frequency, and monetary (RFM) pat-
tern for SPM. Although RFM variables have been considered by
several researchers in developing data-mining methods, this paper
is the first in applying RFM in SPM. The RFM-patterns, as
traditional sequential patterns, could be applied in various EC
applications, such as cross-selling, product recommendation, per-
sonalized marketing. E-catalog design, and product bundle design.
(For details, refer to (Han and Kamber 2007).

We modify the traditional Apriori algorithm to produce a novel
algorithm, named RFM-Apriori, for generating all RFM-patterns.
Extensive experiments using nine synthetic datasets and one
real-life dataset are carried out to evaluate the proposed algorithm.

In addition to the contributions of introducing the RFM concept
to SPM and developing an efficient algorithm, we propose a frame-
work for generating valuable information on customer purchasing
behavior for managerial decision-making. Specifically, we suggest
a segmentation method by partitioning the patterns into groups
based on the RFM indices such that a retailer can further compare,
contrast, and aggregate these groups of patterns to find, for exam-
ple, possible changes in purchasing patterns over time.

Because of the difficulty of obtaining e-retailing clickstream
data, we use a real dataset collected by an off-line retailer. There
are differences between on-line and off-line retailing data. For in-
stance, the conversion rate in on-line retailing is normally lower
than off-line, making it more difficult to reach sufficient frequency
for most items. Furthermore, the scale of visiting frequency varies
drastically between on-line and off-line – we can safely use days as
the time unit for off-line firms, which may not necessarily be ade-
quate for on-line firms. In addition, the patterns of customer visits/
purchases could be very different. In view of these problems, fur-
ther research is necessary to study how the differences in the data
influence the patterns generated.

There are several possible extensions for future research. In
this paper, we use crisp (exact) constraints to discover patterns.
Fuzzy constraints may be used instead, which would allow the
thresholds to be flexible. Furthermore, since it may be difficult
for a retailer to properly set threshold values for the selection cri-
teria, developing a systematic mechanism for making such a
determination would be an interesting issue for further study. Fi-
nally, this work can be extended by considering additional crite-
ria/attributes, such as time and location, in defining sequential
patterns, which would involve generalizing the GSP algorithm
for finding patterns possessing required attributes and/or satisfy-
ing selection criteria.

Appendix A. Proofs of analytical results

Proof of Lemma 1. Suppose B = hI1I2i is in LIrf
2 . Then, I1 and I2 must

satisfy the frequency constraint and I2 must satisfy the recency
constraint. Therefore, I1 must be in LIf

1, and I2 must be in LIrf
1 .

Consequently, all patterns in LIrf
2 can be found from LIf

1 joining LIrf
1 .

Similarly, we generate CIk, where k > 2, by joining LIrf
k�1 and

LIrf
k�1. In other words, if B1 = hIa, I2, I3, . . . , Iki, where B1 2 LIrf

k , and
B2 = hIb, I2, I3, . . . , Iki, where B2 2 LIrf

k , then we will have hIa, Ib,
I2, I3,, . . . , Iki and hIb, Ia, I2, I3, . . . , Iki in CIk.

Proof of Lemma 2. Suppose pattern B = hI1, I2, . . . , Ik�1, Iki is in LIrf
k .

Then, any subsequence of B = hJ1, J2, . . . , Jsi with Js = Ik will also be
in LIrf

s .

Proof of Lemma 3. According to Lemma 2, if B = hI1, I2, . . . , Ik�1, Iki is
in LIrf

k , then B1 = hI1, I3, . . . , Ik�1, Iki and B2 = hI2, I3, . . . , Ik�1, Iki must be
in LIrf

k�1. Since the candidate patterns generated by joining B1 and
B2 belong to CIk, CIk must contain all patterns in LIrf

k .
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Proof of Theorem 1. The algorithm first uses the traditional Apri-
ori algorithm to find LIf

1, and then scans the database to find LIrf
1

and LIrfm
1 by computing their rf-supports and rfm-supports. Since

the time complexity of this step is dominated by those of the suc-
ceeding steps, we skip analyzing its time complexity. In the second
step, the algorithm repeats K iterations to find the patterns of all
different lengths. In iteration k, 1 6 k 6 K, the algorithm performs
the following operations: (1) It generates CIk; (2) Build the inverse
candidate tree from CIk: and (3) Scan every transaction of the data-
base by procedure Traverse to determine the supports of all candi-
date patterns in CIk.

To generate CIk, it needs to join two sets, either LIf
1 join LIrf

1 or
LIrf

k�1 join LIrf
k�1. It is difficult to estimate the exact size of CIk

because many patterns in the set are redundant and can be
removed. However, almost all previous studies about Apriori-like
algorithms have the same finding that the largest candidate size
usually happens at small k. Therefore, we treat the largest size of
jCIkj as a parameter, and the time needed to generate CIk is
bounded from above by O(q).

Next, we store CIk in a candidate tree. To this end, we first create
an empty tree and then insert every candidate pattern in CIk into
the tree. Thus, the tree can be constructed in time O(q � R),
because we insert at most q candidate patterns into the tree, where
each candidate pattern has a length no more than R.

Having constructed the candidate tree, we need to scan the
database by procedure Traverse to compute the supports of
candidate patterns in CIk. Although procedure Traverse seems a
little complicated, its function can be summarized as: it generates
all subsequences of length k from the data sequence one after
another and check if the generated subsequence can match a leaf
node, a candidate pattern, in the tree. If so, we then further check if
it only satisfies the recency constraint or satisfies both the recency
and monetary constraints. By checking these constraints, the
procedure can determine the three supports of a pattern. In this
step, please note that the number of subsequences with length k in
a data sequence is no more than Cn

R. Further, a subsequence takes
O(R) steps to traverse from the root to a leaf node. Once reaching
the leaf node, we then check the recency and monetary constraints
to determine the three supports, which can be done in time O(R).
Therefore, procedure Traverse takes time OðCn

R � RÞ to process a
data sequence. Accordingly, it spends time Oðm� Cn

R � RÞ to
process all data sequences in phase k. Summing the times for
these three parts, we obtain the total time for these K iterations is
Oðððm� Cn

R � RÞ þ ðq� RÞÞ � KÞ. In a normal situation, it is
expected that Oðm� Cn

RÞP OðqÞ, and, as a result, the time
complexity can be expressed as Oððm� Cn

R � RÞ � KÞ.
Appendix B. Description of the datasets used in the experiments

We applied the algorithm proposed by Agrawal and Srikant
(1995) to generate the synthetic datasets. Each transaction in the
datasets contains a sequence of itemsets. However, the transaction
data are extended such that the items in different itemsets are as-
signed different time values and that those in the same itemsets
are assigned the same time values. A value w is generated ran-
domly from a Poisson distribution with mean TI for each customer,
which is used as the average time interval between successive
itemsets in the sequence of this particular customer. Then, the
intervals between successive itemsets of this customer are ran-
domly generated by a Poisson distribution with mean w. All items
are divided into three price levels: high, medium, and low. The
type of an item is randomly determined according to the propor-
tions specified beforehand. Then, an item’s price is randomly gen-
erated by a Poisson distribution with mean H_price, M_price, or
L_price, depending on its type. We also assume that the quantity
of an item purchased in a transaction is inversely related to its
price. According to this assumption, the purchased quantities of
high-, medium-, and low-priced items are generated by a Poisson
distribution with mean H_quantity, M_quantity, and L_quantity,
respectively. In this experiment, we set 50% of items at a low price
level, 30% at a medium price level, and the last 20% at a high price
level.

A real dataset, called SC-POS, is also used in the experiment. The
data was supplied by the Songchine supermarket chain in Taiwan,
consisting of transactional records from its twenty branches be-
tween 2001/12/27 and 2002/12/31. Each transactional record con-
tains the date, time, item names, prices, and purchased quantities
associated with the transaction. A series of data pre-processing and
cleaning tasks were performed, including combining the sequence
data from the 20 branches, removing records without information
on a membership card, and merging the transactions of the same
customer into one data-sequence. After the data preparation, we
sort all transactions of the same customer according to the transac-
tion times. The final SC-POS dataset contains 17,685 product items
and 33,500 customers’ data-sequences.
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